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Abstract

Optical lattices provide highly controllable systems for trapping and exciting gases of ultracold

atoms. They are ideal candidates for the quantum simulation of condensed matter systems, for

which many implementations require higher orbital occupation. In this report, methods for creating

higher orbital states in a square optical lattice are extended to the triangular lattice geometry, where

the lattice sites are assumed to be singly occupied by ultracold atoms in the Mott regime. The target

states are achieved using three techniques: (i) modulation of the positions of the trap minima (known

as shaking), (ii) modulation of the polarisation phase between the lasers forming the lattice and

(iii) amplitude modulation of the control lasers. Specific control sequences are designed to achieve

both selective excitation of atoms to higher orbital states and a large-angular-momentum state in

which each atom has orbital angular momentum l ' 2~. Although the target states designed are

specific, the techniques developed in this report are general and can be used to create a wide variety

of states.
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1 Introduction

An optical lattice is an artificial crystal of light created by interfering laser beams. When an atom

is illuminated by a laser beam, the electric field of the laser induces a dipole moment in the atom

which couples to the field and modifies the internal states of the atom. This interaction (called

the AC-Stark shift) depends on the light intensity and thus a spatially varying intensity produces

a spatially varying potential which can be used to trap atoms. The interference pattern formed

by the interference of more than one retroreflected laser beam in a plane produces a 2D periodic

potential landscape we call an optical lattice. This potential is periodic in space and stationary in

time because retroreflected laser beams form standing waves that vary in space only.

The control parameters of the lasers (eg. amplitude, phase, polarization) can be changed in time to

precisely control aspects of the lattice such as the spacing between adjacent lattice sites (known as

the lattice constant) and the potential well depth. Condensed matter systems such as crystals are

often grown and prone to imperfections and vibrational modes of the lattice itself, but optical lattices

are formed via the interference of light and are therefore perfectly regular and cannot be deformed

by vibrations. This high degree of control and perfect periodicity makes optical lattices invaluable

as tools in quantum simulation, where there is a direct mapping from the crystal structure of the

condensed matter system to the optical lattice itself and from the conduction electrons of the solid

state system to the atoms trapped in the optical lattice [1]. The atoms trapped in an optical lattice

mimic the behaviour of these conduction electrons in an ionic crystal, but in a highly-controllable

and stable environment. Note that the energetic and spatial scales involved in this simulated system

are far different from those of a condensed matter system, as summarised by the following table:

Optical Lattice Solid State Crystal

Trapped particle Neutral Atoms Valence Electrons

Lattice spacing ∼ 10−6 m ∼ 10−10 m

Particle mass 10− 100 a.m.u. 10−3 a.m.u.

Temperature ∼ 10−9 K ∼ 100 K

Table 1: Summary of the mapping from a condensed matter system to an optical lattice and the

length, energy and mass scales involved in both regimes. Orders of magnitude obtained from [2].
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The large difference in temperature is a result of the difference in lattice spacing and mass of the

trapped particles, such that to probe the same physics that occurs at 100 K in a solid state system we

require a temperature on the order of a few nK in an optical lattice. Of course this extreme cooling

presents its own challenges, but also comes with advantages such as very low thermal noise and

relatively long timescales for observations (ms to seconds). Studies of ultracold atoms in optical

lattices have primarily been conducted with the square lattice geometry (see Fig. 1) due to its

simplicity and wide variety of applications, but in order to accurately simulate condensed matter

systems with triangular or hexagonal lattice geometries, corresponding triangular or hexagonal

optical lattices are required. An optical lattice formed via the interference of three or more lasers

such as the triangular lattice will not in general be separable1 and therefore more difficult to analyze,

but despite this some studies have been conducted with these geometries [3][4][5].

(a) (b)

Figure 1: (a) Contour plot representation of a square lattice, named so because of it’s square unit

cell in two dimensions (red). (b) 3D plot of the same optical lattice.

Typically an ultracold gas of atoms will be loaded into an optical lattice in the ground state, but as

outlined in the next section many applications of optical lattices require higher orbital occupancy.

In this project, we take the geometry of a triangular lattice formed by the retroreflection of three

lasers and develop techniques of exciting the trapped atoms to higher orbitals. We assume the lattice

1“Separable” means that the potential can be written as a product of potentials in the different spatial coordinates

of the system. For example if the coordinates used are 2D polar coordinates r and θ, then a potential separable in

these coordinates could be written V (r, θ) = R(r)Θ(θ)
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sites to be singly occupied (ie a filling factor of one) and that we work in the Mott regime such

that we neglect interactions between particles localized in different lattice sites. We also assume

a strong confinement in the direction orthogonal to the plane of lattice confinement and therefore

neglect dynamics in this dimension. The techniques of excitation investigated here are

(i) Lattice shaking, whereby the spatial phases of the control lasers are varied so as to translate

the whole optical lattice without deformation.

(ii) Modulation of the polarization phase of the lasers, a method of modulating the interference

terms between the control lasers either to provide energy/ angular momentum to the atoms

in each lattice site or to selectively excite certain lattice sites, as is done in this report.

(iii) Modulation of control laser amplitudes, whereby the amplitude of the control lasers (and thus

the depth of the potential well at each lattice site) is varied in time.

The rest of the report is structured as follows: In the next section, we will outline the major results

achieved using optical lattices in the past two decades, in order to motivate the need for further

research and demonstrate the versatility of this tool. In section 3, we derive the potential structure

from first principles and outline methods of controlling the interference terms between the lasers

forming the lattice. In section 4, for each of the three methods outlined above we first derive

a four-level approximation for the system, then use this four-level approximation to derive control

schemes (the control parameters of the lasers as functions of time) that bring the system to example

target states. In section 5, approximations made in the four-level approximations are verified and

experimental considerations for creating states using these control schemes are discussed. In section

6, the results of the four-level schemes are summarised and their usefulness put into perspective,

with some useful derivations and explanations present in the Appendix.
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2 Background

It was pointed out in 1997 that a metal-insulator-like transition can be induced in ultracold atoms

in a quasiperiodic optical potential by changing the amplitude of the driving force in time [6]. In

2002 an optical lattice was used to observe the quantum phase transition from a superfluid to a

Mott insulator in a gas of ultracold atoms [7], which sparked great interest in the field. Since then

the study of ultracold atoms in optical lattices has grown rapidly as an invaluable tool in quan-

tum simulation. For example, both cold non-condensed atoms [8][9] and Bose-Einstein condensates

[10][11] have been studied in optical lattices under the action of both a time-independent homoge-

neous force and a time-periodic force.

In experiments using optical lattices typically the lattice is two-dimensional and the third dimension

is made redundant with a harmonic confinement. Note that this (along with the Gaussian profile of

the lasers) causes an inhomogeneity in the lattice that must be taken into account when comparing

experimental results to results derived for a perfectly periodic potential [12]. A gas loaded into

the trap is cooled to temperatures on the order of nK via methods such as evaporative and laser

cooling, which greatly reduces thermal noise. A detailed review of theoretical and experimental

work in optical lattices can be found at [12] and a more modern summary at [13].

There is great interest in the scientific community surrounding the study of condensed matter

systems with high orbital occupancy. Reasons for this include the important role higher orbital

electrons play in models of high temperature superconductivity [14][15] and their proposed role in

quantum computation [16]. The orbital physics of electrons can be emulated in an optical lattice

using the orbital degrees of freedom in the higher Bloch bands of the lattice [17][18], leading to

great interest in studying these bands [19]. As a result of this interest, extensive research has been

conducted in the field of creating excited states in optical lattices, primarily in the modulation of

lattice amplitudes and the positions of trap minima (shaking). Lattice shaking has been imple-

mented experimentally [20][8] and has been used to realize theoretical models such as the Haldane

model, which is the first crystal model to describe topological behaviour [21]. Periodic modulation

of the lattice amplitude has also been used to prepare higher orbital states in an optical lattice,

and was used to study the Bose-Hubbard model [10]. In this report we develop these excitation

techniques, in a lattice geometry suitable for studying triangular condensed matter systems.
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3 Triangular Lattice Potential

ŷ

x̂

k1

k2k3

laser

mirror

Figure 2: Laser arrangement to form triangular optical lattice

Consider the interference of three retro-reflected laser beams as in Fig. 2 such that each laser estab-

lishes a standing wave. Each laser is assumed to have a variable phase angle φ(t) and polarisation

phase ρ(t). The net electric field E at some position r is given by the superposition of the three

electric fields at that point, due to the linear nature of Maxwell’s equations;

E(r, t) =

3∑
j=1

Eje
iρj(t) sin[kj · r + φj(t)]e

−iωLt, (1)

where ωL is the common frequency of each laser. The wave vectors kj as shown in Fig. 2 are rotated

by an angle of 2π/3 radians relative to each other and are represented in Cartesian coordinates by

k1 = k

0

1

 , k2 =
k

2

√3

−1

 , k3 =
k

2

−√3

−1

 , (2)

where k is the common wavenumber of each laser. For simplicity we assume that all polarisations

are of the same magnitude and direction2, ie E1 = E2 = E3 ≡ E0. The potential experienced by

an atom with transition dipole moment µ in a two dimensional optical lattice [23] is given by

V (r, t) =
1

4~∆
|µ ·E∗(r, t)|2, (3)

wherein ∆ is the detuning of the lasers with respect to the atomic transition frequencies. If the

energy of an atomic transition is ~ω0, then using lasers tuned above this resonance frequency (ie

2Note that choosing the polarizations to be in the plane of the lattice can be used to create a hexagonal lattice

structure, for details see [22].
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ωL > ω0) is called “blue” detuning. Conversely, ωL > ω0 is called “red” detuning. The quantity ∆

is defined as ωL − ω0 and is therefore positive in the case of blue detuning. The laser detuning is

assumed here to be blue. Combining Eq. 1 and Eq. 3 we obtain

V (r, t) = V0 sin2[k1 · r + φ1(t)] + V0 sin2[k2 · r + φ2(t)] + V0 sin2[k3 · r + φ3(t)]

+ 2V0 cos[ρ2(t)− ρ1(t)] sin[k1 · r + φ1(t)] sin[k2 · r + φ2(t)]

+ 2V0 cos[ρ3(t)− ρ1(t)] sin[k1 · r + φ1(t)] sin[k3 · r + φ3(t)]

+ 2V0 cos[ρ3(t)− ρ2(t)] sin[k2 · r + φ2(t)] sin[k3 · r + φ3(t)], (4)

where we have defined

V0 ≡
|µ ·E0

∗|2

4~∆
. (5)

This can be rewritten in a more compact form as

V (r, t) = V0

3∑
i=1

3∑
j=1

cos[ρi(t)− ρj(t)] sin[ki · r + φi(t)] sin[kj · r + φj(t)]. (6)

3.1 Interference Between Control Lasers

The potential Eq. 6 is relatively complicated, and so we seek here to simplify it by removing

all interference terms between different control lasers. Note the distinction between interference

between different lasers and the control lasers interfering with their retroreflected beams, which is

necessary to create a lattice stationary in time. To accomplish this, we first detune the frequency of

laser 1 (corresponding to k1) by some amount ε. The time dependence of the components of lasers

2 and 3 will be e−iωLt, whereas for laser 1 this will now be e−i(ωL+ε)t. Via the same calculation as

the previous section we obtain

V (r, t) = V0 sin2(k1 · r + φ1) + V0 sin2(k2 · r + φ2) + V0 sin2(k3 · r + φ3)

+ 2V0[cos(ρ2) cos(εt) + sin(ρ2) sin(εt)] sin(k1 · r + φ1) sin(k2 · r + φ2)

+ 2V0[cos(ρ3) cos(εt) + sin(ρ3) sin(εt)] sin(k1 · r + φ1) sin(k3 · r + φ3)

+ 2V0 cos(ρ3 − ρ2) sin(k2 · r + φ2) sin(k3 · r + φ3), (7)

where we have omitted the explicit time dependence of the control parameters ρ and φ. We then

impose the condition that for a control scheme of total time T , we have ωL � ε � 1/T . The first

part of this condition ensures that the lattice be only negligibly distorted by the shift in frequency,
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while the second ensures that interference terms containing εt oscillate sufficiently quickly to average

to zero [24]. Thus we are left with the triangular lattice potential

V (r, t) = V0 sin2(k1 · r + φ1) + V0 sin2(k2 · r + φ2) + V0 sin2(k3 · r + φ3)

+ Vρ(t) sin(k2 · r + φ2) sin(k3 · r + φ3), (8)

where we have defined the control parameter

Vρ(t) ≡ 2V0 sin[ρ(t)]. (9)

The quantity ρ(t) describes the deviation from orthogonal polarisation between control lasers 2 and

3 via ρ(t) ≡ ρ3(t)− ρ2(t) + π/2, such that if control lasers lasers 2 and 3 are orthogonally polarised

this interference term will be zero3. This is the assumption made in the following section in which

we consider only the lattice shaking, leaving us with the potential

V (r, t) = V0 sin2(k1 · r + φ1) + V0 sin2(k2 · r + φ2) + V0 sin2(k3 · r + φ3). (10)

3.2 Lattice Geometry

The optical lattice as as defined by Eq. 10 exhibits a nearest-neighbour spacing of 2L ≡ 2π/
√

3k

(which happens to be in directions perpendicular to the kj) and a distance between the lattice

minima of 2π/k along directions parallel to the kj .This lattice structure is shown in Fig. 3.

Let us define a set of vectors {k⊥1 ,k⊥2 ,k⊥3 }, which are simply each of the kj rotated counter-clockwise

by π/2 radians as in Fig. 3. These vectors will be useful in describing dynamics at different lattice

sites and are represented in Cartesian coordinates by

k⊥1 = k

−1

0

 , k⊥2 =
k

2

 1
√

3

 , k⊥3 =
k

2

 1

−
√

3

 . (11)

We assume the extent of the unit cell to be roughly described by x ∈ {−L,L}, y ∈ {−L,L}, ie

a Cartesian square of side length 2L. Since we assume the system to be in the Mott regime, all

integrals that appear in calculations in later sections (for example 〈Φ| cos(kx) |Φ〉 where |Φ〉 is a

state of the system) will be taken over the domain of the unit cell, as opposed to over all space.

3In general, orthogonally polarized waves will not interfere. This is the first of the Fresnel Arago laws which

describe the interference properties of light with different states of polarization [25].
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Figure 3: Triangular lattice geometry, where 2L ≡ 2π/
√

3k is the nearest neighbour spacing.

4 Generating Excited States

We will now examine three methods of generating excited states in this triangular optical lattice.

In each case we will derive a four-level approximation for the Hamiltonian of a particle in one of the

lattice sites, then use this approximation to derive control schemes (the control laser parameters as

functions of time) that bring the system to some desired target state. The four-level approximations

are necessary as our problem is a very difficult one to solve: given the evolution of the system from

the ground state to some desired target state, solve for the time-dependence of the functions involved

in the potential. Here these functions are the control parameters for our lasers forming the lattice,

such as amplitude and phase. The methods described here are general and could be used in many

optical lattice geometries, but the control sequences designed in the following sections apply only

to their respective lattice potentials and target states.
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4.1 Lattice Shaking

4.1.1 Shaking Schemes

By manipulating the φj(t) we can shake the whole lattice along any desired direction, but since

the potential is not separable in x and y as with a square lattice, certain relationships must hold

between the φj for the lattice to remain undistorted. If we denote the time-dependent x and y

coordinates of the central minimum by X(t) and Y (t) respectively, the φi can be written in terms

of X and Y as

φ1 = −kY (12)

φ2 = −
√

3

2
kX +

1

2
kY (13)

φ3 =

√
3

2
kX +

1

2
kY, (14)

where the explicit form Eq. 2 of the kj has been used in the evaluation of r · kj and we omit

the explicit time dependence of X,Y and the φj . We can then write V explicitly in terms of the

translations X and Y as

V (r−R0, t) = V0 cos2[k(y − Y )] + V0 cos2

[
k

√
3

2
(x−X)− k

2
(y − Y )

]

+V0 cos2

[
−k
√

3

2
(x−X)− k

2
(y − Y )

]
(15)

where R0 is the time dependent position of the central minimum (X,Y ), where the notation v =

(a, b) implies v = ax̂+ bŷ. This leads to three natural choices for lattice shaking directions, namely

(a) along x̂, which would imply Y = 0 (b) along ŷ, which would imply X = 0 and (c) along the line

y = x, which would imply X = Y . Therefore we have the constraints for each scheme

(a) φ1 = 0, φ2 = −
√

3

2
kX, φ3 = −φ2

(b) φ1 = −kY, φ2 =
1

2
kY, φ3 = φ2

(c) φ1 = −kY, φ2 = −1

2
(
√

3− 1)kY, φ3 =
1

2
(
√

3 + 1)kY (16)

where X and Y (and thus, the φi) are arbitrary functions of time, such that the lattice can be

shaken with any time dependence along any direction desired, via a linear combination of (a) and

(b) in Eq. 16.
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4.1.2 Reference Frame Transformation

We now examine the Hamiltonian for a particle in the central lattice site at (0, 0), although at

this level of analysis all atoms will evolve identically. It is useful to transform the Hamiltonian of

the particle from the lab frame to the lattice rest frame, in which the lattice is at rest and the

particle is shaken by the φj(t). This transformation is given in [8] and is summarised here. The lab

Hamiltonian is given by

Hlab(t) =
p2

2m
+ V (r−R0, t) (17)

To transform to the lattice rest frame, we utilise a unitary operator U = U3U2U1 where each of the

Uj are themselves unitary operators. The first is a translation operator

U1 = exp

[
i

~
R0(t) · p

]
, (18)

the second is a momentum shift operator (where an upper dot represents a time derivative)

U2 = exp

[
− i
~
mṘ0(t) · r

]
, (19)

and third an operator which removes a time dependent energy shift from the Hamiltonian,

U3 = exp

[
− i
~
m

2

∫ t

0
ds Ṙ0(s) · Ṙ0(s)

]
(20)

The Hamiltonian changes under any unitary transformation U0 as Hnew = U †0HoldU0− i~U †0 U̇0 [26].

Therefore the lattice frame Hamiltonian is given by

Hlattice(t) = U †HlabU − i~U †U̇ . (21)

Evaluating Eq. 21 and making use of Liebniz’s integral rule we obtain

Hlattice(t) =
p2

2m
+ V (r, t) +mR̈0 · r (22)

The advantage of this transformation is that the Hamiltonian of the system in question here is

now easily written as the sum of a time-independent part H0 and a time-dependent part H1(t), ie

Hlattice(t) = H0 +H1(t) with4

H0 ≡
p2

2m
+ V0 sin2(k1 · r) + V0 sin2(k2 · r) + V0 sin2(k3 · r), (23)

H1(t) ≡ mẌx+mŸ y. (24)

4Note that the form of H1(t) will change in later sections as we consider different techniques, but the unperturbed

Hamiltonian H0 will remain the same throughout the report.
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The time-dependent part of this Hamiltonian has an intuitive form, as in the lattice frame Ẍ

represents the acceleration of the particle in x̂, and therefore mẌ represents the force on the

particle and mẌx a potential energy.

4.1.3 Four-level Approximation

As mentioned before, we now have the following problem to solve: We have a time-dependent

Hamiltonian and an atom in the ground state, then we choose a target state and must solve for

the time dependence of the potential that accomplishes this. This is not possible to do in general

with the full Hamiltonian Eq. 23 and so we use a basis of only the four most relevant states of the

system to obtain an approximation for the dynamics. We use a basis of only four states because

these states are resonantly coupled, but due to the anharmonicity5 of the potential higher states are

slightly detuned in energy and can therefore be neglected. This idea is further developed in Sec. 5.

The basis states chosen are {|00〉 , |10〉 , |01〉 , |11〉}, where in this notation, 〈r|ij〉 = Φi(x)Φj(y) and

Φ denotes a local eigenstate of H0 in one dimension as outlined in Appendix B. For example, |01〉

describes a state which is a product of the 1D ground state of H0 in x and the 1D first excited state

of H0 in y. The energies of the eigenstates are given by Eij = ~ωij , with the energy gap between

the ground state and first excited state given by E10 − E00 ≡ ~ωd as in Fig. 4. This energy gap is

important as if we wish to transfer an atom from the ground state to the first excited state we can

do so by varying the control parameters on-resonance with this transition (ie at a frequency ωd) as

we will do in the following calculations.

Note that since H0 is not separable in x and y, it is not possible to write its eigenstates as products

of functions Φi(x)Φi(y) as is done above. This approach does however become exact in the harmonic

limit V0 →∞ and is useful to obtain an approximation for the dynamics of the system. The validity

of using a four-level scheme comprised of states separable in x and y is discussed in Appendix B.

5In a quantum harmonic oscillator, all energy levels are equally spaced by ~ω where ω is the natural frequency of

the oscillator. In this case a process that excites particles from the ground state to the first excited state will also

excite atoms in the first excited state to the second excited state, because the energy gap is identical. This leads

to “leakage” of the state of the particle to higher levels, which makes a perfectly harmonic trap not suitable for the

preparation of higher orbital states.
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Figure 4: Four-level scheme of first excited states and the coupling parameters between them.

We now assume a particular form of the lattice shaking, chosen here to be

X(t) = −gx(t) cos(ωdt), (25)

Y (t) = −gy(t) cos(ωdt), (26)

which assumes the frequency of the shaking is on resonance with the energy transition from the

ground state to first excited state. Defining two new functions

f (1)x (t) ≡ mẌ = mω2
dgx(t) cos(ωdt), (27)

f (1)y (t) ≡ mŸ = mω2
dgy(t) cos(ωdt), (28)

where we have assumed gx(t) and gy(t) vary slowly in time, we can write the time dependent part

of the Hamiltonian as

H1(t) = xf (1)x (t) + yf (1)y (t). (29)

We now define a unitary transformation U(t) whose purpose is to remove all diagonal terms in the

Hamiltonian. If this is achieved we have a clear representation of the coupling (population transfer)

between the different basis eigenstates of the system via the off-diagonal elements of the matrix

representation of the lattice Hamiltonian. If U is defined as

U(t) ≡ e−iω00tX00(t) |00〉 〈00|+ e−iω10tX10(t) |10〉 〈10|

+ e−iω01tX01(t) |01〉 〈01|+ e−iω11tX11(t) |11〉 〈11| , (30)

12



with the quantities Xn,m(t) defined as

Xnm ≡ exp

(
− i
~

∫ t

0
ds 〈nm|H1(s) |nm〉

)
, (31)

then this goal is accomplished. Note that only diagonal matrix elements of H1 are involved in the

X as these are the elements we wish to “transform away”. The quantity 〈nm|H1(s) |nm〉 which

appears in the Xnm simplifies greatly in this case, as all terms in H1(t) are odd with respect to x or

y. Since the overlaps always contain two identical states in either x or y, only even terms in H1(t)

would be nonzero regardless of the parity of the eigenstates in question. This becomes clear when

a general separable term F (x, y) = Fx(x)Fy(y) in 〈nm|H1(s) |nm〉 is expanded as

〈nm|Fx(x)Fy(y) |nm〉 =

∫ +L

−L
dx Φn(x)Fx(x)Φn(x)

∫ +L

−L
dy Φm(y)Fy(y)Φm(y). (32)

Therefore in this case, all X reduce to 1. In a four state basis the Hamiltonian will be represented by

a 4×4 matrix which we will denote H4L(t), and as with any unitary transformation the Hamiltonian

changes under U as H4L(t) = U†H0U − i~U†U̇ + U†H1(t)U . If we exploit the fact that for a

symmetric potential structure ground state wave functions Φ0(s) are even, whilst first excited state

wave functions Φ1(s) are odd (shown in Appendix A) and the orthogonality of the eigenstates of

the Hamiltonian H0 the first two terms simplify to

U†H0U − i~U†U̇ = −
∑
j

|j〉 〈j|H1(t) |j〉 〈j| , (33)

where the index j will represents the combined state indices {00, 10, 01, 11}. The third term can be

written as

U†H1(t)U = U†
[
xf (1)x (t) + yf (1)y (t)

]
U . (34)

If we again take advantage of the parity of x, y and the ground and first excited states this simplifies

to

U†H1(t)U = e−i(ω10−ω00)tf (1)x γ |00〉 〈10|+ e−i(ω11−ω01)tf (1)x γ |01〉 〈11|

+e−i(ω01−ω00)tf (1)y γ |00〉 〈01|+ e−i(ω11−ω10)tf (1)y γ |10〉 〈11|+ h.c.

+
∑
j

|j〉 〈j|H1(t) |j〉 〈j| , (35)

where h.c means Hermitian conjugate and we have defined

γ =

∫ +L

−L
ds Φ0(s)sΦ1(s). (36)
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Then via the approximate symmetry of the unperturbed lattice (Eq. 10) we have that ω10 = ω01,

so using the fact that ωd = ω10 − ω00 and ω11 = 2ω10 − ω00 we have that ω11 − ω10 = ωd. With

these simplifications the four-level Hamiltonian can be represented by

H4L = e−iωdtf (1)x γ |00〉 〈10|+ e−iωdtf (1)x γ |01〉 〈11|

+ e−iωdtf (1)y γ |00〉 〈01|+ e−iωdtf (1)y γ |10〉 〈11|+ h.c. (37)

If we reintroduce the forms of f
(1)
x Eq. 27 and f

(1)
y Eq. 28 and expand each sine in terms of complex

exponentials we obtain

H4L =
~
2

{
Ωx(t)

[
1 + e−2iωdt

]
|00〉 〈10|+ Ωx(t)

[
1 + e−2iωdt

]
|01〉 〈11|

+Ωy(t)
[
1 + e−2iωdt

]
|00〉 〈01|+ Ωy(t)

[
1 + e−2iωdt

]
|10〉 〈11|

}
+ h.c. (38)

where we have defined the couplings

Ωx,y(t) ≡
mωd

2γgx,y(t)

~
. (39)

We now make the rotating wave approximation, in which we assume terms oscillating at nωd with

n ∈ Z (but n 6= 0) average to 0 over a process of time T (ie ωd � 1/T ). With this approximation

we obtain a final four-level Hamiltonian for the shaking scheme of

H4L =
~
2


0 Ωx Ωy 0

Ωx 0 0 Ωy

Ωy 0 0 Ωx

0 Ωy Ωx 0

 , (40)

where we have used the ordered basis

|00〉 =


1

0

0

0

 , |10〉 =


0

1

0

0

 , |01〉 =


0

0

1

0

 , |11〉 =


0

0

0

1

 . (41)

Note the connection between this matrix representation and Fig. 4, in which the quantity Ωx

connects the basis state |00〉 to |10〉 and the state |01〉 to |11〉 (similar for Ωy).
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4.1.4 Pulse Sequences

Our goal is now to demonstrate the usefulness of the four-level approximation by deriving control

schemes that bring the system to some target states. The example target states chosen here are

|Ψa〉 = |01〉 (ie all sites containing an atom in the first excited state in y) and

|Ψb〉 =
1√
2

(|10〉 − i |11〉), (42)

which is a superposition of the first excited state in y and the first excited state in x and y. Assuming

all lattice sites initially contain a single particle in the state |00〉, all atoms can be excited to the

state |Ψa〉 via a π pulse in Ωy. An overview of pulses is given in Appendix C. For a process of total

time T , we choose Ωy(t) to satisfy the following conditions:

• The process is smoothly turned on and off, ie d
dtΩy(t) is 0 at t = 0 and t = T ,

• The control parameters are zero-valued at the start and end of the process (necessary for the

final state of the system to match the target state up to some global phase, see Appendix D),

ie Ωy(t) = 0 at t = 0 and t = T ,

• The total pulse area is π, ie
∫ T
0 Ωy(t) = π.

These conditions are satisfied by the polynomial

Ωy(t) =
30πt2(t− T )2

T 5
, t ∈ [0, T ]. (43)

If we compare this polynomial expression for Ωy(t) with Eq. 39 we can obtain the time evolution

of the control parameters that bring the system to the desired terget state. In this case of lattice

shaking in the y direction we have

Y (t) = − ~
mω2

dγ
Ωy(t) cos(ωdt) (44)

and X(t) = 0. The form of this shaking where Ωy(t) is given by Eq. 43 is shown in Fig. 5 alongside

the evolution of the state of an atom initially in |00〉. All lattice sites will evolve identically and will

do so with 100% fidelity in the framework of the four-level approximation. Note that the timescale

is measured in units of ω, which is the frequency of the corresponding harmonic oscillator obtained

by expanding H0 about a lattice site (see Appendix B).
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Figure 5: (a) State evolution for particle initially in state |00〉 under influence of π pulse in Ωy.

Legend: | 〈ψ(t)|00〉 |2 (blue), | 〈ψ(t)|10〉 |2 (orange), | 〈ψ(t)|01〉 |2 (green), | 〈ψ(t)|11〉 |2 (red). (b)

Shaking amplitude Y (t) corresponding to this π pulse represented in units of the lattice constant

2L. Note shaking amplitudes are only a small fraction of nearest-neighbour distance.

A transfer of the population to state |Ψb〉 is accomplished in a piecewise manner as follows:

1. Transfer all the population to the state |10〉, which is accomplished via a π pulse in Ωx.

2. Transfer half of the population to the state |11〉, such that an atom in a given lattice site will

be in the superposition state |Ψb〉 = 1√
2
(|10〉 − i |11〉). This is accomplished via a π/2 pulse

in Ωy.

For a process of total time T , we choose the first pulse to take place over a time ts < T and the

second pulse over a time T − ts. We choose Ωx(t) and Ωy(t) to satisfy similar conditions to those

of Ωy(t) in the previous section which yield the polynomial expressions

Ωx(t) =
30πt2(t− ts)2

t5s
, t ∈ [0, ts], (45)

Ωy(t) =
15π(t− ts)2(t− T )2

(T − ts)5
, t ∈ [ts, T ], (46)

and are zero-valued at times other than those indicated. The state evolution resulting from this

control scheme is shown for ts = T/2 in Fig. 6. Note that the validity of the rotating wave

approximation is discussed in Sec. 5.
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Figure 6: (a) State evolution for particle initially in state |00〉 under influence of π pulse in Ωx

followed by π/2 pulse in Ωy. Legend: | 〈ψ(t)|00〉 |2 (blue), | 〈ψ(t)|10〉 |2 (orange), | 〈ψ(t)|01〉 |2 (green),

| 〈ψ(t)|11〉 |2 (red). (b) Shaking amplitudesX(t) (blue) and Y (t) (orange) corresponding to this pulse

sequence.

4.2 Modulation of Polarization Phase

Another method of excited state preparation is the modulation of the polarization phase between

the control lasers, chosen here to be lasers 2 and 3. This method has been used in [27] to create

angular momentum states in a square lattice but is here used to selectively excite lattice sites. Using

the potential as in Eq. 10 and applying the same frame transformation as in the previous section

we obtain the full Hamiltonian H = H0 +H1(t) with

H0 =
p2

2m
+ V0 sin2(k1 · r) + V0 sin2(k2 · r) + V0 sin2(k3 · r), (47)

H1(t) ≡ mẌx+mŸ y + Vρ(t) sin(k2 · r) sin(k3 · r). (48)

As before we define the functions f
(2)
x (t) = mẌ and f

(2)
y (t) = mŸ , but here we assume these

functions to be slow varying compared to ωd in contrast to the previous section.

4.2.1 Four-level Approximation

We again assume the system can be described by the states |00〉 , |10〉 , |01〉 , and |11〉 and apply the

unitary transformation U as defined by Eq. 30 to obtain the four-level Hamiltonian

H4L = e−iωdtX ∗00X10f
(2)
x γ |00〉 〈10|+ e−iωdtX ∗01X11f

(2)
x γ |01〉 〈11|

+ e−iωdtX ∗00X01f
(2)
y γ |00〉 〈01|+ e−iωdtX ∗10X11f

(2)
y γ |10〉 〈11|+ h.c. (49)
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where a ∗ represents a complex conjugate. We can also expand the X ∗abXcd terms by exploiting the

parity properties of the basis states, such that all overlaps with odd terms (ie x and y) are zero and

we can write

〈nm|H1(s) |nm〉 = Vρ(t)(αn + βm − 1) (50)

where we have defined

αn =

∫ +L

−L
ds Φn(s) cos2

(√
3

2
ks

)
Φn(s), (51)

βn =

∫ +L

−L
ds Φn(s) cos2

(
1

2
ks

)
Φn(s). (52)

Thus the X ∗abXcd terms can be written as

X ∗abXcd = exp

[
i

~
(αa + βb − αc − βd)

∫ t

0
ds Vρ(s)

]
, (53)

and the four-level Hamiltonian simplifies to

H4L = γe−iωdtf (2)x (t) exp

[
i

~
(α0 − α1)

∫ t

0
ds Vρ(s)

]
|00〉 〈10|

+ γe−iωdtf (2)x (t) exp

[
i

~
(α0 − α1)

∫ t

0
ds Vρ(s)

]
|01〉 〈11|

+ γe−iωdtf (2)y (t) exp

[
i

~
(β0 − β1)

∫ t

0
ds Vρ(s)

]
|00〉 〈01|

+ γe−iωdtf (2)y (t) exp

[
i

~
(β0 − β1)

∫ t

0
ds Vρ(s)

]
|10〉 〈11|+ h.c. (54)

4.2.2 Selective Site excitation

We now examine the effect of the interference term Vρ(t) sin(k2 · r) sin(k3 · r) at different lattice

sites. If we write the spatial part of this interference I(r) ≡ sin(k2 · r) sin(k3 · r) in terms of x and

y we obtain

I(r) =
1

2

[
cos
(√

3kx
)
− cos(ky)

]
, (55)

where r = (x, y). If we displace the coordinates by n lattice sites along the k⊥1 direction, using the

nearest neighbour spacing 2L = 2π/
√

3k and the forms of the k⊥j Eq. 11 then I changes as

I(r− n(2L)k̂⊥1 ) =
1

2

[
cos
(√

3kx+ 2nπ
)
− cos(ky)

]
= I(r), (56)

ie the effect of the interference term is identical at all lattice sites along the k⊥1 direction (which

happens to be −x̂). If we then perform the same calculation for displacements along the k⊥2 and

18



(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t/T

V
ρ
/
C

(b)

Figure 7: (a) Change in sign of interference term at different bands of lattice sites (if interference

term is positive along red bands then it is negative along blue) (b) Vρ(t) with ramp-up time τ = T/10.

k⊥3 directions we obtain

I(r− n(2L)k̂⊥2 ) =
1

2

[
cos
(√

3kx− nπ
)
− cos(ky − nπ)

]
= (−1)nI(r), (57)

I(r− n(2L)k̂⊥3 ) =
1

2

[
cos
(√

3kx− nπ
)
− cos(ky + nπ)

]
= (−1)nI(r). (58)

These relations6 imply that the interference term changes sign along bands of sites which have the

same x coordinate as in Fig. 7. We can therefore choose Vρ(t) such that along a given band and

each band 2π/k displaced from this band in ŷ we have

X ∗abXcd ' eiωdt, (59)

while on all bands in between we have

X ∗abXcd ' −eiωdt. (60)

This is equivalent to requiring that for excitations in x,∫ t

0
ds Vρ(s) '

~ωdt
α0 − α1

, (61)

while for excitations in y ∫ t

0
ds Vρ(s) '

~ωdt
β0 − β1

. (62)

6Note that the third relation is superfluous, as the three k⊥
j are not linearly independent. A displacement along

k⊥
3 can be described by a displacement along -k⊥

2 and then along -k⊥
1 . Since I(r) is invariant under displacements

along k⊥
1 , then I must change along k⊥

3 as it does along k⊥
2 .
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At all sites where X ∗abXcd ' eiωdt, all terms in H4L will be proportional to e±2iωdt and thus the

rotating wave approximation can be applied, such that the Hamiltonian has no effect at these sites.

At all sites where X ∗abXcd ' e−iωdt, all terms in H4L will be proportional to e0 = 1, and the Hamil-

tonian reduces to that of the previous section Eq. 40 (but with Ωx,y(t) = 2γf
(2)
x,y(t)/~). Therefore

we can selectively excite bands of atoms via pulses in Ωx and Ωy provided we manipulate Vρ in an

appropriate manner.

If Vρ(t) is chosen to be a smoothed tophat function as in Fig. 7, then the Hamiltonian will only

act on alternating bands of sites. This effect is shown for both a lattice site where the Hamiltonian

is turned “on” and where the Hamiltonian is turned “off” in Fig. 8, where the initial state is |00〉,

the target state is |10〉 and as usual we accomplish this via a π pulse in Ωx. To minimise error in

the approximation it is useful to choose the peak value of ρ to be slightly higher than the value it

must “match” denoted C (for example C = ~ωd/(α0 − α1) in the case of a pulse in x), where the

discrepancy depends on the ramp-up and ramp-down time τ . For given τ we choose a peak value

for the smoothed tophat function of

Vρ,max =
CT

T − τ
, (63)

or in terms of the parameter τ ′ = τ/T , which is the ramp-up time as a proportion of the total

process time T

Vρ,max =
C

1− τ ′
. (64)

With this choice of Vρ we expect an error of O(τ) in the approximation such that at any time t we

have
α0 − α1

~

∫ t

0
ds Vρ(s) = ωdt+O(τ). (65)

Therefore the validity of applying the rotating wave approximation here depends linearly on the

ramp-up time, which is assumed to be equal to the ramp-down time.
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(a) (b)

Figure 8: (a) State evolution for particle initially in state |00〉 under influence of π pulse in Ωx.

Legend: | 〈ψ(t)|00〉 |2 (blue), | 〈ψ(t)|10〉 |2 (orange), | 〈ψ(t)|01〉 |2 (green), | 〈ψ(t)|11〉 |2 (red). (b)

State evolution on lattice site where interference term is effectively “turned off” via interference

term modulation.

4.3 Amplitude Modulation

The final method of generating excited states in an optical lattice developed in this report is the

modulation of the control laser amplitude. Here we establish a control scheme for amplitude mod-

ulation in a triangular lattice with the goal of creating a large angular momentum state, in which

each lattice site is occupied by an atom in the superposition

|+〉 =
1√
2

(|20〉+ i |02〉), (66)

which is an eigenstate of the z component of the angular momentum operator Lz, such that Lz |+〉 '

2~ |+〉. Transitioning a lattice of atoms in the ground state |00〉 to this state |+〉 via amplitude

modulation was already investigated in [27] using a square lattice and a second square lattice rotated

relative to the first, but here we create this large angular momentum state in a triangular lattice

geometry.

4.3.1 Alternative Lattice Potential

We now use a lattice potential slightly different to that of the previous sections, as now we no longer

have control parameters φj(t) and ρ(t) but instead A1(t) related to the amplitude of laser 1 and
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A2,3(t), related to the common amplitude of lasers 2 and 3. We choose to write the electric field as

E(r, t) = E0

√
1 +A1(t)e

−i(ω+ε)t sin(k1 · r)

+E0

√
1 +A2,3(t)e

−iωt sin(k2 · r)

+E0e
−iθ
√

1 +A2,3(t)e
−iωt sin(k3 · r) (67)

where we have assumed the frequency of laser 1 is detuned by an amount ε as in Sec. 3.1 and θ

represents the time-independent polarization phase difference between lasers 2 and 3. Calculating

the potential structure according to Eq. 3 and assuming terms oscillating at ε can be neglected we

obtain

V (r, t) = V0 [1 +A1(t)] sin2(k1 · r) + V0 [1 +A2,3(t)] sin2(k2 · r)

+ V0 [1 +A2,3(t)] sin2(k3 · r) + 2V0 [1 +A2,3(t)] cos(θ) sin(k2 · r) sin(k3 · r). (68)

If we then assume lasers 2 and 3 are orthogonally polarised (ie θ = π/2) and define a(t) ≡ V0A1(t)

and b(t) ≡ V0A2,3(t) then we can write down the Hamiltonian of the system in the lab frame

H(t) = H0 +H1(t) with

H0 =
p2

2m
+ V0 sin2(k1 · r) + V0 sin2(k2 · r) + V0 sin2(k3 · r), (69)

H1(t) ≡ a(t) sin2(k1 · r) + b(t)
[
sin2(k2 · r) + sin2(k3 · r)

]
. (70)

Using the forms of the kj as in Eq. 2 we can rewrite H1(t) as

H1(t) = a(t) sin2(ky)− b(t) cos
(√

3kx
)

cos(ky) + b(t) (71)

The time-dependent energy shift b(t) to the Hamiltonian can be disregarded, as in a similar manner

to Eq. 20 we can define a unitary transformation

V ≡ exp

(
− i
~

∫ t

0
ds b(s)

)
(72)

which commutes with the Hamiltonian, so that under this transformation H0 remains unchanged

and H1(t) becomes

H1(t) = a(t) sin2(ky)− b(t) cos
(√

3kx
)

cos(ky). (73)
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4.3.2 Four-level Approximation

We now approximate the dynamics of the system as being described by the basis of states of

eigenstates of H0: {|00〉 , |20〉 , |02〉 , |22〉}, i.e. we consider only excitations to second excited states

in x and y. This level scheme is shown in Fig. 9. We choose these four basis states as they

are resonantly coupled and we choose control parameters which excite on-resonance with the |00〉

to |20〉 or |02〉 transition. As before the anharmonicity of the potential detunes higher energy

states and thus these states can be neglected. Again we utilize the unitary transformation U

as defined by Eq. 30 to remove the diagonal elements of H̃4L (the matrix representation of the

particle Hamiltonian in this basis), in order to examine the couplings between different basis states.

Evaluating H̃4L(t) = U†HU − i~U†U̇ we obtain

H̃4L = ei(ω20−ω00)tX ∗00X20 〈00|H1(t) |20〉 |00〉 〈20|

+ ei(ω02−ω00)tX ∗00X02 〈00|H1(t) |02〉 |00〉 〈02|

+ ei(ω22−ω00)tX ∗00X22 〈00|H1(t) |22〉 |00〉 〈22|

+ ei(ω02−ω20)tX ∗20X02 〈20|H1(t) |02〉 |20〉 〈02|

+ ei(ω22−ω20)tX ∗20X22 〈20|H1(t) |22〉 |20〉 〈22|

+ ei(ω22−ω02)tX ∗02X22 〈02|H1(t) |22〉 |02〉 〈22|+ h.c. (74)

We then make several simplifications to the form of H̃4L, the first of which by noting that due to the

approximate symmetry of the unperturbed lattice we have ω20 = ω02, and so with ω̃d ≡ ω20 − ω00

we note that ω22 − ω00 = 2ω̃d.

The second simplification is to expand the 〈nm|H1(t) |pq〉 terms; if we define

Cij(η) ≡
∫ +L

−L
ds Φi(s) cos(ηks)Φj(s) = Cji(η), (75)

Sij ≡
∫ +L

−L
ds Φi(s) sin2(ks)Φj(s) = Sji, (76)

then we can write

〈nm|H1(t) |pq〉 = a(t)Smqδnp − b(t)Cnp(
√

3)Cmq(1), (77)

where δnp is the Kronecker delta for indices n, p. Finally we simplify the XnmXpq terms, which can
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Figure 9: Four-level scheme of second excited states and the coupling parameters between them.

be written explicitly as

X ∗nm(t)Xpq(t) = exp

[
i

~

∫ t

0
ds 〈nm|H1(s) |nm〉 −

i

~

∫ t

0
ds 〈pq|H1(s) |pq〉

]
. (78)

Then using the previous simplification we may write this as

X ∗nm(t)Xpq(t) = exp

[
i

~
(Smm − Sqq)

∫ t

0
ds a(s)

]
Gnmpq(t), (79)

where we have defined

Gnmpq(t) ≡ exp

{
i

~

[
Cpp(
√

3)Cqq(1)− Cnn(
√

3)Cmm(1)
] ∫ t

0
ds b(s)

}
. (80)

Let us now assume a particular form of the amplitude modulation of laser 1

a(t) = g(t) cos(ω̃dt), (81)

which is on-resonance with the transition from |00〉 to |20〉, with a slowly varying envelope g(t).

With this form of amplitude modulation we can make the approximation∫ t

0
ds a(s) =

∫ t

0
ds g(s) cos(ω̃ds)

=
1

ω̃d

[
g(t) sin (ω̃dt)−

∫ t

0
ġ(s) sin (ω̃ds) ds

]
' 1

ω̃d
g(t) sin (ω̃dt) , (82)

where in the final step we assume ġ ' 0. With this approximation we can write the X ∗nmXpq as

X ∗nm(t)Xpq(t) ' exp[−ig(t)Aqm sin(ω̃dt)]Gnmpq(t), (83)
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where we have defined

Amq ≡
Sqq − Smm

~ω̃d
. (84)

We then make use of the Jacobi-Anger expansion [28]

e−iκ sin(λt) =
+∞∑

k=−∞
Jk(κ)e−ikλt, (85)

where Jk(κ) is the kth Bessel function of the first kind, to write

X ∗nm(t)Xpq(t) = Gnmpq(t)
+∞∑

k=−∞
Jk[g(t)Amq]e

−ikω̃dt. (86)

There are two kinds of terms in H̃4L, the first of which is

e±iω̃dta(t)S02X ∗abXac. (87)

Let us simplify these terms by first writing a(t) Eq. 81 in terms of complex exponentials and

expanding the X ∗abXac via Eq. 83. This yields

=
g(t)S02

2

(
1 + e±2iω̃dt

)
Gabac(t)

+∞∑
k=−∞

Jk[g(t)Abc]e
−ikω̃dt. (88)

We then make the rotating wave approximation, whereby all terms oscillating at nω̃d with n ∈ Z

(but n 6= 0) average to 0, such that we retain only the terms

' g(t)S02
2

Gabad(t){J0[g(t)Abc] + J±2[g(t)Abc]}. (89)

Note that the Gabac(t) term survives the rotating wave approximation, as the term Cpp(
√

3)Cqq(1)−

Cnn(
√

3)Cmm(1) � ω̃d/ω for a typical well depth of 3V0/~ω. The validity of this statement is

confirmed via numerical calculation of the overlap integrals in Fig. 10 (b), where it is assumed

that the eigenstates are that of the 2D harmonic oscillator. We then note that A00 = A22 = 0 and

A02 � 1 as is also shown in Fig. 10 (b), and therefore we make the approximations J0[g(t)Abc] ' 1

and J1,2[g(t)Abc] ' 0 to obtain

e±iω̃dta(t)S02X ∗abXac '
g(t)S02

2
Gabad(t). (90)

If we impose that we always perform modulation pulses in a piecewise manner (ie if a(t) 6= 0 then

b(t) = 0 and vice versa) then we have the final form of the first type of term

e±iω̃dta(t)S02X ∗abXac '
g(t)S02

2
. (91)
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Figure 10: (a) Bessel functions of the first kind. (b) Parameters Amq and C2002 ≡ C00(
√

3)C22(1)−

C22(
√

3)C00(1) as a function of lattice depth. Note the coincidental identical evolution of both

parameters.

Now we examine the second type of term, which is of the form

e±Niω̃dtb(t)Cac(
√

3)Cbd(1)X ∗abXcd, N ∈ {0, 1, 2}. (92)

By again using the Jacobi-Anger expansion of the X ∗abXcd we obtain

= b(t)Cac(
√

3)Cbd(1)e±Niω̃dt

{
Gabcd(t)

+∞∑
k=−∞

Jk[g(t)Aqm]e−ikω̃dt

}
. (93)

If we again make the rotating wave approximation we are left with a single term for a given N :

' b(t)Cac(
√

3)Cbd(1)Gabcd(t)J±N [g(t)Aqm]. (94)

As before we make the approximations J0[g(t)Aqm] ' 1 and J1,2[g(t)Aqm] ' 0 and note that for

integer n, J−n = (−1)nJn to obtain

'


b(t)Cac(

√
3)Cbd(1)Gabcd(t) for N = 0

0 for N = ±1,±2

(95)

For convenience we assume that the term G2002 ' 1 (which is accurate for typical well depths of ∼

3V0/~ω as C00(
√

3)C22(1)−C22(
√

3)C00(1) ∼ 0.1) but note that this is not a strict assumption as the

dynamics can still be obtained relatively easily by numerical means. With all these simplifications

we may return to the four-level Hamiltonian Eq. 74 which can now be written as

H̃4L '
~
2

{
Ωc(t) |20〉 〈02|+ Ωy(t) |00〉 〈02|+ Ωy(t) |20〉 〈22|

}
+ h.c. (96)
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where we have defined the couplings

Ωy(t) = −g(t)S02
~

, (97)

Ωc(t) =
2b(t)C20(

√
3)C02(1)

~
. (98)

This can be represented in matrix form as

H̃4L =
~
2


0 0 Ωy 0

0 0 Ωc Ωy

Ωy Ωc 0 0

0 Ωy 0 0

 , (99)

where we have used the ordered basis

|00〉 =


1

0

0

0

 , |20〉 =


0

1

0

0

 , |02〉 =


0

0

1

0

 , |22〉 =


0

0

0

1

 . (100)

Again note the connection between this matrix representation and the energy level diagram Fig. 9,

wherein Ωy connects the state |00〉 to |02〉 and the state |20〉 to |22〉, while the quantity Ωc couples

|02〉 to |20〉.

4.3.3 Control Scheme

We now seek the control scheme that takes our atoms to the state |+〉 = 1√
2
(|20〉 + i |02〉), which

is an angular-momentum state with angular momentum ' 2~. As before we accomplish this in the

four-level scheme via a piecewise process:

1. Transfer all the population to the state |02〉, which is accomplished via a π pulse in Ωy.

2. Transfer half of the population to the state |20〉, such that an atom in a given lattice site will

be in the superposition state |Ψ〉 = 1√
2
(|20〉+ i |02〉). This is accomplished via a −π/2 pulse

in Ωc.

For a process of total time T , we choose the first pulse to take place over a time ts < T and the

second pulse over a time T − ts. As in previous sections we choose Ωy(t) and Ωc(t) to be smooth
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Figure 11: (a) State evolution for particle initially in state |00〉 under influence of π pulse in Ωy

of duration ts = T/3 and a −π/2 pulse in Ωc to achieve target state |+〉. Legend: | 〈ψ(t)|00〉 |2

(blue), | 〈ψ(t)|20〉 |2 (orange), | 〈ψ(t)|02〉 |2 (green), | 〈ψ(t)|22〉 |2 (red). (b) Amplitude modulation

a(t) (blue) and b(t) (orange) corresponding to this control sequence.

varying functions that are zero-valued at the endpoints of the pulses such that

Ωy(t) =
30πt2(t− ts)2

t5s
, t ∈ [0, ts], (101)

Ωc(t) =
15π(t− ts)2(t− T )2

(T − ts)5
, t ∈ [ts, T ], (102)

and are zero-valued at times other than those indicated. If we write the control parameters in terms

of the couplings Ωy,c(t) we obtain

a(t) = − ~
S02

Ωy(t) cos(ω̃dt), (103)

b(t) =
~

2C20(
√

3)C02(1)
Ωc(t). (104)

The evolution of the state of an atom in a given lattice site under these control parameters is shown

in Fig. 11 for ts = T/3 and a total time T = 500ω, where as in previous sections ω is the harmonic

frequency of the lattice site with ω2 = 3V0k
2/m.
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5 Discussion

There are two primary assumptions made in the derivation of the previous 4-level schemes, namely

(i) the rotating wave approximation is valid and (ii) the dynamics of the system are accurately

described by a four state basis. The first of these assumptions is easily investigated and under-

stood. Fig. 12 depicts the evolution of the state of an atom in a given lattice site under both of the

control schemes designed in Sec. 4.1 for varying total process times T . For T = 5ω and T = 10ω

the rotating wave approximation has begun to break down, and as a result the fidelity of the final

state is reduced. The degradation in fidelity7 with decreasing T is shown in Fig. 13 for the shaking

process derived in Sec. 4.1.4 which excites atoms from the ground state |00〉 to the state |Ψb〉.

Note that in the piecewise scheme of Sec. 4.1.4 it has been assumed that ts = T/2, ie that both

pulses take place over half the total process time. This is the optimal choice for this scheme as

both pulses rely on the rotating wave approximation. For example if ts were chosen to be T/10,

the pulse taking place over 9T/10 would have relatively high fidelity, but the shorter pulse would

be relatively inaccurate. To ensure the validity of the rotating wave approximation and the slow

varying shaking amplitude envelope assumption that ġ(t) ' 0 we simply need to impose the heuris-

tic condition T � (ωd)
−1 ' (ω)−1 as in [29] where ω2 = 3V0k

2/m is the approximate harmonic

oscillator frequency at each lattice site. In the case of excitations to the second excited state this

condition becomes T � (ω̃d)
−1 ' (2ω)−1.

In the harmonic limit the energy levels become equally spaced (energies of the quantum harmonic

oscillator are ~ω(n + 1/2), n ∈ N0) and therefore higher levels become resonantly coupled. In this

regime further energy levels are required in the basis to fully describe the system (see Appendix B of

[29] where a 6-level approximation is developed for the deep-well limit). For example, if the system

were described exactly by a harmonic oscillator in x and y (ie ωd → ω and ω̃d → 2ω) then shaking in

x on resonance with the |00〉 to |10〉 transition would resonantly couple the state |20〉 which would

then need to be included in the basis of states. In the 4-level model shaking on-resonance with the

desired transition gives the best results but a small detuning in shaking frequency actually reduces

leakage to higher levels by detuning levels not included in the 4-level model. In this anharmonic

case the resonance curve is slightly shifted such that by slightly increasing the detuning of Ωx or

7The term “fidelity” refers to the accuracy of the final state, in that if our target state is |Ψ〉, then the fidelity of

our state ψ(t) at a time T is | 〈Ψ|ψ(T )〉 |2
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(b) T = 10/ω (scheme 2)
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(c) T = 50/ω (scheme 1)
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(d) T = 50/ω (scheme 2)
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Figure 12: Comparison of rotating wave approximation in accurate regime and when the assumption

breaks down. Subfigures represent state evolution for particle initially in state |00〉 under influence

of (scheme 1) π pulse in Ωy and (scheme 2) π pulse in Ωx followed by π/2 pulse in Ωy. Legend:

| 〈ψ(t)|00〉 |2 (blue), | 〈ψ(t)|10〉 |2 (orange), | 〈ψ(t)|01〉 |2 (green), | 〈ψ(t)|11〉 |2 (red)
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Figure 13: Fidelity | 〈Ψb|ψ(T )〉 |2 dependence on total process time T .

Ωy with respect to the |00〉 → |10〉 or |01〉 transition, an even greater detuning in the |10〉 → |20〉

or |01〉 → |02〉 transitions are achieved. This decreases leakage to those states not included in the

4-level approximation and this improves the fidelity of the final state.

Note that it was also assumed that we work in the Mott regime, whereby we discount all interactions

between neighbouring lattice sites and thus all overlap integrals (such as γ, the Sij and the Cij)

can be taken over the unit cell (assumed to be x ∈ [−L,L], y ∈ [−L,L]). We have also ignored

tunnelling rates and assumed that no tunnelling takes place over timescales of interest (namely,

T ). In reality tunnelling will take place between lattice sites at a rate defined by the energy of the

particles and the properties of the lattice [1]. In the case of the triangular lattice it is an experi-

mentally realised and theoretically predicted fact that tunnelling rates are slow enough to perform

the desired observations [22]. The topology of the triangular lattice is such that tunnelling rates

may be comparatively lower to that of a square lattice with similar nearest neighbour spacing and

particle energy which would improve confinement, but there is the competing effect of more nearest

neighbour sites to which an atom may tunnel. The result of these competing effects is a tunnelling

rate comparable to that of the square lattice [30] (square) [22] (triangular).
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6 Conclusions

We have developed control schemes for the creation of various excited states in a triangular optical

lattice using the techniques of (i) lattice shaking, (ii) modulation of polarization phase of the con-

trol lasers and (iii) modulation of lattice amplitude. The specific control schemes derived here form

only a small subset of the simple states possible in this lattice geometry, but do form part of the

basic tools necessary for state preparation in optical lattices. The schemes produced here were all

piecewise in nature, but note that invariant-based approaches could be used to optimise the process

against certain errors [31]. By optimising the preparation of states against relevant errors such as

the leakage to higher resonantly coupled energy states, the fidelity of the final state achieved can

be greatly improved.

One important aspect of this work yet to be completed is the numerical simulation of the full

Schrödinger equation for the system. This numerical work would confirm the validity of the various

approximations and simplifications made in the development of the 4-level schemes. These simula-

tions could be performed via the Fourier split-operator method [32] but this work was not in the

scope of this project. In conjunction, an analysis of the tunnelling rates between lattice sites for

the various orbitals of interest could be conducted in order to obtain estimations for the lifetimes of

the states creates in the lattice. When the lattice site occupancy increases past 1, the assumptions

made in the derivation of these control schemes are no longer valid (eg. non-interacting particles).
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shaped pulse,” Phys. Rev. Lett., vol. 111, p. 050404, Jul 2013.
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Appendix A Eigenstate Parity Restriction

Consider the (1D) time independent Schrödinger equation[
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (A1)

where the potential function V (x) is even in x (that is to say V (−x) = V (x)). If we reflect the

coordinate x to −x and account for the parity of V we are left with[
− ~2

2m

d2

dx2
+ V (x)

]
ψ(−x) = Eψ(−x). (A2)

Since both ψ(x) and ψ(−x) solve the same differential equation, we know ψ(x) = Cψ(−x) where

C is some constant. Now employing that all wavefunctions much be normalised to be physically

realisable, we have that |C| = 1 and thus C = ±1. If we have ψ(x) = ±ψ(−x), then clearly all

wavefunctions that solve the time independent Schrödinger equation must be either even or odd.

More heuristically, since the kinetic energy of a particle depends on the square of its momentum

and the momentum operator in quantum mechanics describes the curvature of the wavefunction

(as it contains a second derivative), we can fairly say that the more “curvy” a wave function is, the

higher the energy of the state it represents. Therefore, the more nodes (zeroes) a particular wave

function has, the higher the energy. The lowest energy possible state will have no nodes (excluding

the fact that it must go to 0 as the coordinates go to infinity) and thus the ground state cannot be

odd. If the ground state isn’t odd, we are guaranteed by the above argument that it is even. With

each successive state of higher energy, the number of nodes increases by 1 and the parity flips over

and back between even and odd. Thus, the first excited state is odd.
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Appendix B Eigenstates of Unperturbed Hamiltonian

The unperturbed Hamiltonian H0 as defined in Eq. 23 is itself not separable in x and y, but the

local potential of each unit cell can be approximated by harmonic potentials to obtain estimates of

the eigenstates up to fourth order in x and y. The Taylor series of H0 about (0, 0) is

H0 =
p2

2m
+

3

2
V0k

2(x2 + y2) +O(x4, y4) (B1)

where k represents the wave number of the control lasers, as opposed to the usual spring constant.

We assume a blue detuning (ie ∆ > 0) such that V0 is positive and therefore the Hamiltonian

is locally that of the quantum harmonic oscillator. This approximation becomes more accurate

as V0 increases to the harmonic limit V0 → ∞. We have obtained two identical 1D Schrödinger

equations, one in x and one in y, whose eigenfunctions are that of the Harmonic potential with

effective frequency ω2 = 3V0k
2/m. The eigenfunctions of such a potential are well known, with the

three lowest energy states given by

Φ0(s) =
(α
π

)1/4
e−

1
2
αs2 (B2)

Φ1(s) =
(α
π

)1/4√
2α e−

1
2
αs2 (B3)

Φ2(s) =
(α
π

)1/4(2αs2 − 1√
2

)
e−

1
2
αs2 (B4)

in terms of the parameter

α = 3k2
(
V0
~ω

)
, (B5)

where k is the wavenumber of the control lasers and V0 is defined by Eq. 5. These approximate

eigenfunctions are used in the evaluation of overlap integrals for the purpose of simplifying the 4-

level approximations. In the case of Sec. 4.1.3 we have that ωd → ω in the harmonic limit V0 →∞,

whereas in the case of Sec. 4.2.1 since we are considering second excited states we have ω̃d → 2ω

in the harmonic limit. Note that ω̃d 6= 2ωd as the spacing in energy levels of the unperturbed

Hamiltonian H0 is not uniform, whereas the spacing of energies in the quantum harmonic oscillator

is uniform (and hence the limit of 2ω).

The claim is also made in this report that ground states of H0 will be even and first excited states

is odd. Via Appendix A this is fulfilled if the potential is even in both x and y. Although this

Hamiltonian is not separable in x and y, locally the potential is even about 0 in both directions (see

Eq. B1).
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Appendix C Population Transfer Pulses

Our goal is to transfer a proportion of the population in a given state to another state, provided

we have a Hamiltonian H with no diagonal elements (and therefore describes the coupling between

basis states). Let us consider a 2-level system described by states |1〉 and |2〉 under the action of a

Hamiltonian

H =
~
2

0 Ω

Ω 0

 , (C1)

which is represented in the ordered basis

|1〉 =

1

0

 , |2〉 =

0

1

 . (C2)

We assume for the moment that Ω is time-independent. Since the eigenstates of H form a basis for

the system we may write the time-dependent state of the system |Ψ(t)〉 in terms of these states as

|Ψ〉 = |1〉 〈1|Ψ〉+ |2〉 〈2|Ψ〉 =

〈1|Ψ〉
〈2|Ψ〉

 ≡
ψ1

ψ2

 . (C3)

We can then apply the time-dependent Schrödinger equation i~ ∂
∂t |Ψ〉 = H |Ψ〉 to write

i~
∂

∂t

ψ1

ψ2

 =
~
2

0 Ω

Ω 0

ψ1

ψ2

 , (C4)

which is a pair of coupled first order differential equations in ψ1 and ψ2

i
∂ψ1

∂t
=

Ω

2
ψ2, (C5)

i
∂ψ2

∂t
=

Ω

2
ψ1. (C6)

This system of equations can be solved by taking the time derivative of one equation and substituting

the result into the other to obtain

∂2ψ1

∂t2
= −

(
Ω

2

)2

ψ1, (C7)

∂2ψ2

∂t2
= −

(
Ω

2

)2

ψ2. (C8)

If we then impose the boundary conditions that the population is entirely in state |1〉 at time t = 0

such that ψ1(t = 0) = 1, ψ2(t = 0) = 0 and that the total state Ψ is normalized then the solution
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to these equations is

ψ1 = 〈1|Ψ〉 = cos

(
Ω

2
t

)
, (C9)

ψ2 = 〈2|Ψ〉 = −i sin

(
Ω

2
t

)
. (C10)

The probability for the system to be found in the states |1〉 and |2〉 are thus given by

P1 ≡ | 〈1|Ψ〉 |2 = cos2
(

Ω

2
t

)
, (C11)

P2 ≡ | 〈2|Ψ〉 |2 = sin2

(
Ω

2
t

)
. (C12)

These relations imply that the system oscillates between the states |1〉 and |2〉 at a frequency Ω/2.

If we allow this Hamiltonian to act on a system initially in the state |1〉 until such a time that

Ωt = π, then via Eq. C14 all the population will have been transferred to the state |2〉. If we then

“turn off” the Hamiltonian we have achieved a complete population inversion. This is called a π

pulse.

If we instead allow the Hamiltonian to act until such a time that Ωt = π/2, then we will have

an identical proportion of the population in |1〉 and |2〉. Therefore, the system will be in the

superposition state

|Ψ〉 =
1√
2

(|1〉 − i |2〉). (C13)

This is called a π/2 pulse. This can be generalised to a time-dependent Ω in which case we obtain

P1 = | 〈1|Ψ〉 |2 = cos2
(

1

2

∫ t

0
ds Ω(s)

)
, (C14)

P2 = | 〈2|Ψ〉 |2 = sin2

(
1

2

∫ t

0
ds Ω(s)

)
, (C15)

such that the condition for a π pulse becomes
∫ t
0 ds Ω(s) = π and the condition for a π/2 pulse

becomes
∫ t
0 ds Ω(s) = π/2. The same analysis can be performed in higher dimensions with initial

conditions for the occupancy of each basis state in a similar manner, as is applied in the main body

of this report.
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Appendix D Unitary Transformations

Throughout the body of this report unitary transformations are used to simplify calculations, for

example in a reference frame transformation, 4-level approximation and in the removal of a time-

dependent energy shift from the Hamiltonian. As quoted in the main text, for a unitary transfor-

mation U the Hamiltonian changes as

H̃ = U †HoldU − i~U †U̇ (D1)

where U̇ represents the partial time derivative of U . What was neglected in the report is the fact

that if ψ(t) solves the Schrödinger equation with Hold then the new Schrödinger equation with H̃

is solved by the wave function

ψ̃(t) = Uψ(t). (D2)

In other words we can write

H̃ψ̃ = i~
dψ̃

dt
. (D3)

It would appear then that all target states obtained in the body of the report must include several

unitary transformations to be accurate, which is true for all times 0 < t < T , but by construction

all these transformations reduce to the identity I at the beginning (t = 0) and end (t = T ) of all

processes. This is accomplished via the condition that all control parameters are zero-valued at

these times. This means that at the beginning and end of all processes the state of the system in

our framework which includes several unitary transformations will be identical to the state without

these transformations, as the unitary operator acting on a state simply returns the state. The final

state will differ from the target state by some global phase, but this does not affect the dynamics

of the system and so can be neglected.
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