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ABSTRACT. Using poloidal flux matrices produced by CLISTE for var-
ious currents in the planned upper divertor control coils of ASDEX Up-
grade, the magnetic field at each poloidal field probe was calculated and
the theoretical magnetic measurement estimated. Predicted measurements
were compared to that from various existing discharges to establish a typi-
cal error for a predicted measurement of roughly±1.5 mT. The simulated
magnetic measurements were then examined, showing that that probes
Bthe09-Bthe12 could most confidently detect the changes in the mag-
netic field for upper divertor control coil currents up to -50 kAt. It was
also shown that regular magnetic field gradients cannot be assumed in the
vicinity of control coils and so an average field must be calculated over
the extent of each probe with a mesh spacing of 5×10−4 m or lower.
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1. Introduction

More complicated magnetic field structures near the upper divertor plates can
“‘flare out” the flux tubes, resulting in a power load distributed over an area
roughly 2-3 times larger than the single null configuration (1). For this reason a
set of control coils is planned for ASDEX Upgrade which will have a maximum
operating current of 50 kAt (kilo Amp turns), allowing for more control over the
magnetic field in the vessel. This control includes the position of and number of
X-points, with the effect of these coils not limited to the high-Z (see next sec-
tion for coordinate system) region of the vessel. A concern of ASDEX Upgrade
is the confidence with which these new field configurations can be measured
by the poloidal field coils. This project used CLISTE to produce poloidal flux
matrices for various currents in the control coils and calculated theoretical mag-
netic measurements at each of the in-vessel probes to determine the viability of
confidently measuring these new field configurations.

2. Background

2.1. Coordinates and sign conventions

It is first necessary to outline the coordinate system and conventions employed
at ASDEX Upgrade. The coordinate system used is the cylindrical right-handed
triplet (R,φ ,Z) as in figure 1. Note the coordinate θ is also used, which is the
angle in the poloidal plane. This angle is used to define the orientation of the
probes (which is important as the field they measure is actually calculated via
the rate of change of magnetic flux through the area defined by their loops) as
shown in figure 2. The angle θ is measured CCW from the positive sense of the
R̂ axis when the origin is translated to ri, the position of the ith probe relative to
the machine center.

2.2. Calculation of Magnetic Field from the Poloidal Flux

To calculate the magnetic field at some point in the poloidal plane, one first
needs the derivatives of the poloidal flux Ψ in the R-Z plane. To explain this
requires some background; the following is based a document entitled “Notes
on tokamak Equilibrium” by Youjun Hu of the Institute of Plasma Physics, Chi-
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FIG. 1: Coordinate system used at ASDEX Upgrade, where this view is a side-
view of the torus. Note that the origin is actually at the machine center, so the
high-field (closest to the center) side of the vessel is actually at R' 1 m

nese Academy of Sciences.

Due to the divergenceless of the magnetic field, one can always write B as
the curl of some magnetic vector potential1, A(R,φ ,Z), ie B = ∇×A. Since
we are concerned only with the (ideally) axially symmetric case of a tokamak,
B and thus it’s individual components must be independent of φ . It is easily
shown that an axisymmetric vector potential A(R,Z) suffices to describe this
magnetic field. Expanding this curl in the cylindrical coordinates employed
here and omitting all φ derivatives of the components of A (since they must be
zero) one obtains

B =−
∂Aφ

∂Z
R̂+

1
R

∂ (RAφ )

∂R
Ẑ+

(
∂AR

∂Z
− ∂AZ

∂R

)
φ̂ (1)

Now, looking only at the poloidal ((R,Z) plane) components, it is possible
to write these components in terms of a new function we’ll call ψ(R,Z), the
physical meaning of which will become apparent soon. This function is defined
as ψ(R,Z) = RAφ (R,Z), with the poloidal components now expressed as

1 For a detailed explanation, see Griffith’s Electrodynamics or any introductory electrody-
namics text
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FIG. 2: Two examples of probe orientation, both on the right hand side of the
vessel (right hand side of figure 1). On the left, θ is positive. On the right, θ is
negative. Note that n̂ is the normal to the open surfaces defined by the loops.

BR =− 1
R

∂ψ

∂Z
BZ =

1
R

∂ψ

∂R
(2)

To find out what this ψ means physically, we have a look at a poloidal
cross section with two magnetic surfaces labelled (Fig. 3). (A magnetic surface
being, at least in this φ symmetric case, the surface of revolution obtained by
rotating the projection of a magnetic field line on the (R,Z) plane around the Z
axis. Perhaps more illuminating is the fact that along a magnetic field line, Ψ is
constant, ie dΨ = 0.) Why are we looking at magnetic surfaces? Well it turns
out (as shown below) that magnetic surfaces are exactly the contours of ψ on
the (R,Z) plane. Remembering that on a contour of a function f the change in
f is zero, ie d f = 0, then on a contour of ψ:

dψ = 0

⇒ ∂ψ

∂R
dR+

∂ψ

∂Z
dZ = 0 (3)

Via the chain rule. This can be recast using our expressions for BR and BZ

by first multiplying across by 1/R, yielding:

BZdR−BRdZ = 0

dZ
dR

=
BZ

BR
(4)
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FIG. 3: Poloidal cross section of two magnetic surfaces (thus, contours of ψ as
explained here) S1 and S2

Equation 4 is actually the equation of the projection of a magnetic field line
on the (R,Z) plane. (Note that along a magnetic field line the constant quantity
is the magnetic flux, ie dΨ = 0). Thus, we have shown that the equation of a
contour of ψ can be expressed as that of a magnetic surface. In other words, the
contours of ψ on the (R,Z) plane are the previously defined magnetic surfaces.
We now use this knowledge in the example of Fig. 3.

Evidently the lines labelled S1 and S2 are only “slices” of the full surfaces,
but imagine the full surfaces defined by the rotation of these lines around the Z
axis. Note that since magnetic monopoles don’t exist, magnetic field lines are
closed2 and thus to draw the diagram in full would require completing the loops
of S1 and S2 such that they form two sets nested loops in the (R,Z) plane. Taking
any toroidal ribbon, (by choosing a point on S1 and also on S2, connecting them
and rotating this line segment around Z, one obtains a “ribbon”) we calculate
the poloidal magnetic flux ΨB,pol through this surface (which is enclosed by the
two segmented orange lines in Fig. 3) as

ΨB,pol =
∫∫

ribbon
Bpol ·da

However, we can exploit Gauss’ theorem in the volume between S1 and S2,

2 For an in depth discussion of the history of the magnetic monopole, see Chapter 1 in D.C.
Mattis, The Theory of Magnetism (New York: Harper Row, 1965).
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as since the boundary values are the same for any such defined toroidal ribbon,
we can choose a simplifying case and obtain the same answer. So we choose a
ribbon parallel to the R axis (ie only the Z component of the poloidal magnetic
flux is non-zero) such that the point on S1 is at (R1,Z) and the point on S2 is at
(R2,Z). With Ẑ as the positive direction for the surface normal, we have:

ΨB,pol =
∫ R2

R1

∫ 2π

0
BZ(R,Z)da

=
∫ R2

R1

BZ2πRdR

=
∫ R2

R1

1
R

∂ψ

∂R
2πRdR

= 2π

∫ R2

R1

∂ψ

∂R
dR

ΨB,pol = 2π [ψ(R2)−ψ(R1)] (5)

Just like that we have discovered a physical correspondence for the func-
tion ψ . The poloidal magnetic flux between two magnetic surfaces is simply 2π

(because it runs around the complete azimuthal range) times the difference of
ψ between these magnetic surfaces. This is why ψ is called the “poloidal flux
function”, as it’s difference between two points is directly related to the poloidal
flux through any surface with boundaries on the magnetic surfaces on which the
points lie.

The poloidal flux function is thus in some ways (although not strictly accu-
rate) the physical poloidal flux per radian. This relationship allows for the mag-
netic components BR and BZ to be rewritten in terms of the physical poloidal
magnetic flux ΨB,pol (subscripts omitted) as:

BR =− 1
2πR

∂Ψ

∂Z
BZ =

1
2πR

∂Ψ

∂R
(6)

Another, simpler way to come to this conclusion is to recognise that B =
dΨ/dA, and so using two different surfaces we can easily obtain BR and BZ .
First, consider a toroidal strip with normal only in Ẑ (ie no flux through it due
to BR). The strip has thickness dR (the thickness is colinear with R̂) at radial
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distance R with area element dA = 2πRdR (the well-known and easily derived
area element of a ring). This toroidal strip has only poloidal flux due to BZ , and
so we can calculate this easily as (note partial derivative because Ψ = Ψ(R,Z))

BZ =
dΨ

dA
=

1
2πR

∂Ψ

∂R
(7)

Similarly, if we consider a toroidal strip which has normal only in R̂ such
that the only flux contribution is from BR, and the strip has thickness dZ colinear
with Ẑ, we can calculate BR. Now dA = 2πRdZ, but this this time the normal is
anti-aligned with R̂ (ie points in -R̂) as opposed to the previous case in which n̂
pointed along Ẑ.

BR =
dΨ

dA
=− 1

2πR
∂Ψ

∂Z
(8)

3. Effect of Probe Properties on Measured Quantities

3.1. Probe angle

The poloidal field probes of ASDEX Upgrade measure the time rate of change
of magnetic flux through their area, then digitally integrate this signal to obtain
a magnetic field time series. Since this measurement is based on magnetic flux
through the coils of the probe, the angle of the probe in the poloidal plane will
alter the measurement. With all notation and conventions as in figure 1, the the-
oretically calculated component of both BR and BZ which are perpendicular to n̂
must be discounted. In other words, only their components parallel to n̂ would
actually be measured.

Reminder of the task: Remember that first, CLISTE produces a matrix of
poloidal flux values given property profiles for the plasma. This flux matrix can
then be used to calculate a theoretical estimate for the magnetic field (both com-
ponents) at any point in the poloidal plane via Equation(s) 6. These calculations
must then be adjusted to take into account the fact that the probes of the machine
are at different angles and will not measure the “total” field.
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Via simple trigonometry, the component of BR which is parallel to n̂ is
BR cosθ , whereas the component of BZ parallel to n̂ is BZ sinθ . Thus the pre-
dicted measurement (with BR and BZ already calculated via Equation(s) 6) is
given by

Bmeas = BR cosθ +BZ sinθ (9)

3.2. Impact of Probe Extent

The extent of the probe will also affect measurements, in that the field at one end
of the probe will likely differ from the field at the other end, so to be perfectly
accurate the measurements at each point in the volume of the probe would have
to be averaged. A demonstration of the variation of the magnetic field over the
extent of a probe is shown in Figures 4(a) and 4(b). In Figure 4(a) is a probe
over which the field varies at a roughly constant rate, appearing as a plane. In
this case, the average value over the extent of the probe almost exactly matches
the central value. In Figure 4(b) is a case in which the field does not vary uni-
formly and thus the average value is not well approximated by the central value.

A further, more quantitative demonstration of the impact of extent on the
measurements is shown in Figure 5 for the 40 Bthe probes. This represents
the difference between the center value an average value (calculated over 2500
mesh points) for each probe for two magnetic field configurations: The first in
which the upper divertor coil current is zero and a second comparison in which
the upper divertor coils have a current of -50 kAt (the maximum operational
current for the upper control coils). Probes closest to the control coils have the
most irregular gradients of the magnetic field and thus the center value does
not accurately represent the probe measurement. For the upper divertor control
coils, the closest probes are in the range of roughly Bthe09 to Bthe12 and their
central values diverge greatly from the average value (and therefore the actual
measurement). The maximum deviation occurs for Bthe12 in this case with a
magnitude of roughly 7.5 mT, about 5 times the typical error of CLISTE probe
measurement predictions.

In order to accurately predict probe measurements (ie to avoid typical errors
away from the upper control coils of between 0.5 and 1 mT, and errors up to 8
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(a) Regular variation of B

(b) Irregular variation of B

FIG. 4: Variation in calculated magnetic field over the extent of two example
probes. Note that in (b) there is a current present in the planned upper divertor
coils which increases irregularity
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FIG. 5: Average magnetic field value over a probe calculated here using a
50×50 grid of points over the extent of each probe.

mT near these coils) particularly in the case of high upper divertor control coil
currents, the average field over the extent of the probe must be calculated as the
assumption of a regular gradient breaks down.

3.3. Spatial resolution

The spatial resolution with which the average value is calculated is important,
as the calculated average varies greatly for mesh spacing on the order of 0.5 -
1.0 cm as shown in Figure 6 for the three probes with largest deviation from
their central value. Clearly any mesh spacing above 1 mm is unreliable as small
changes in this quantity result in variation of the average value on the order of
0.5 mT. Saturation occurs for mesh spacings below 1mm, although it is worth
noting that the number of calculations to obtain an average field is inverse-
square proportional to this grid spacing (ie for a 10x10 grid 100 calculations
are required, but if the spacing is decreased by a factor of 10 so that the grid is
now 100x100, 10,000 calculations are required).

For this reason as the grid spacing approaches 10−4 m, the computational
time becomes quite large. The dimensions of the Bthe probes are 0.131 m ×
0.045 m, meaning a grid spacing of 10−4 m corresponds to an evenly-spaced
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FIG. 6: Difference between center value and average value for maximum upper
divertor coil current (-50 kAt) as a function of the probe extent mesh grid spac-
ing. Equal spacing is used along the length and width axes of the probe. The
three probes shown here are those most affected by the upper control coils.

mesh of 1310× 450 points. This is a total of about 590,000 calculations of
the magnetic field via equations 6 for each probe, whereas for a mesh spacing
of 10−3 m, this is reduced to 5,900 calculations. Taking this into account, the
most reasonable grid spacing appears to be 5× 10−4 m, as this is in the region
of saturation and requires 262×90' 24,000 calculations, a factor of 25 lower
than that for a mesh spacing of 10−4 m. Even with much less calculations, the
results obtained for a mesh spacing of 5×10−4 are consistently within 0.1 mT
of that for a spacing of 10−4. Note that 0.1 mT is an order of magnitude smaller
than the typical random noise of the measurements.
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3.4. Irregularity near Bthe20

Not only the probes close to the upper divertor control coils are poorly approxi-
mated by their center value. For example probe Bthe20 experiences a deviation
of roughly 1 mT from the center value, with the difference decreasing moving
away from this probe location. This is due to the presence of ferromagnetic
plates in the vessel very close to Bthe20, as when plasma is present small cur-
rents are induced in the plates that locally distort the magnetic field. For the
example discharge used here (shot number 34263) a demonstration of this local
distortion is shown in Figure 7. Shown is the poloidal flux matrix contour plot
created by CLISTE first without accounting for the effects of magnetization due
to the 7 ferrite tiles along the inner limiter (represented by the green contour),
then with these tiles present.

Clearly the contours become warped or “wavy” when the local distortions
are taken into account. This corresponds to irregularities in the magnetic field
which decrease the accuracy of the assumption of regular poloidal flux gradient.
As expected, by moving away from these plates their effect is reduced, which is
why probes 18 and 23 are largely unaffected. The order of this error is up to 1
mT, which can be avoided by averaging over the probe or by accounting for the
tiles in CLISTE.

3.5. Calculation of average field over probe extent

Now that it is clear an average field must be calculated, it is useful to outline
how this is calculated for a general probe i with center at (Ri,Zi) in the (R,Z)
plane, at a poloidal plane angle of θi as in figure 1. First we define a second
orthogonal coordinate system (x,y) shown in Figure 8 in which x̂ points along
n̂ (ie the “length” axis) and ŷ points along the width axis of the probe. Note that
the origin is at the probe center (ie at position (Ri,Zi) in the (R,Z) coordinate
system) and this new coordinate system changes for each probe.

To obtain a mesh of points over the extent of the probe is not easy in the
(R,Z) coordinate system, but is very simple in (x,y). Therefore we first create
a mesh in (x,y) using x ∈ [−l/2, l/2], y ∈ [−w/2,w/2] where l and w are the
length and width of the probe, respectively. We then need to calculate the mag-
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(a) Regular variation of B (b) Irregular variation of B

FIG. 7: The plots show a 1 metre high (Z ∈ [−0.5,0.5] m) by 10 cm wide (R ∈
[1.0,1.1] m) section of CLISTE equilibrium (34263, t=3.5 sec) poloidal flux
contours. The horizontal axis is greatly stretched (greater than a factor of 10)
to highlight the differences between the smooth contours in the 1st plot and
the distortions of some contours in the 2nd plot, particularly in the top left
quadrant of the 2nd plot. This region partially overlaps the volume occupied by
the Bthe20 magnetic probe (coordinates of centroid: R = 0.98 m, Z= +0.159
m). Courtesy of P. J. McCarthy

FIG. 8: Secondary coordinate system for calculating the magnetic field over the
extent of a general probe.
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netic field at each point on this grid, but the calculation is in terms of R and Z, so
for each point we must first convert it to the (R,Z) coordinate system and then
perform the calculation.

To transform from the (x,y) to the (R,Z) coordinate system is quite simple
and well known (temporarily ignoring the translation of the origin) given that
(x,y) is just rotated CCW by an angle θi relative to (R,Z). This is equivalent to
saying (R,Z) is just rotated CCW by an angle −θi relative to (x,y), so we make
use of the well known result of the transformation of a vector (ie a point) from
one coordinate system to another which is rotated CCW by an angle θ relative
to the first (but here we use−θi). Here our “original” coordinate system is (x,y)
with coordinates of a general point (x′,y′) and our “new” coordinate system is
(R,Z) with coordinates (R′,Z′). To obtain (R′,Z′) given (x′,y′),

[
R′

Z′

]
=

[
cosθi −sinθi

sinθi cosθi

][
x′

y′

]
=

[
x′ cosθi− y′ sinθi

x′ sinθi + y′ cosθi

]

Now, if the origin of both coordinate systems were in the same place we
would be finished, but the (x,y) coordinate system is translated to the position
of the center of the ith probe, (Ri,Zi). To account for this, the coordinates of a
point (x′,y′) in our meshgrid in the (R,Z) coordinate system (which we will call
(R∗,Z∗) here) are the rotated coordinates (R′,Z′) added to the the coordinates of
the center (Ri,Zi). ie

[
R∗

Z∗

]
=

[
Ri + x′ cosθi− y′ sinθi

Zi + x′ sinθi + y′ cosθi

]

Put simply, the coordinates of any point in the grid over the probe can be
expressed in terms of the position of the center of the probe, plus a displacement
in each direction relative to the center of that probe. These coordinates (R∗,Z∗)
are those used in the calculation of the magnetic field at each grid point via
equation(s) 6.
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FIG. 9: A comparison of the accuracy of the code used here and the results of
CLISTE for the 40 Bthe probes of ASDEX Upgrade averaged over many dis-
charges.

4. Accuracy of Predicted Measurements

4.1. Comparison to magnetic measurements

By calculating the predicted magnetic measurements (with the python scripts
written for this project) for many discharges and comparing them to the mea-
sured values, a typical error can be estimated for each poloidal field probe.
This was also completed for the CLISTE results to compare the accuracy of
both methods. When looking at a single discharge, the difference between the
CLISTE values and this code’s values can be up to 5 mT (although typically
much smaller), but as shown in Figure 9, when averaged over many discharges
their predictions are almost identical.

What is particularly interesting about this average error is that the probes
Bthe30 and Bthe28 are, on average, the least accurate. Not only this but their
standard deviations are much higher than that for the other probes as shown in
Figure 10; this plot represents the change in measurement at each poloidal fied
probe when the maximum UDC current is present (at this moment, -50 kAt)
relative to zero current in these coils. The error bars are 1σ standard deviations,
calculated using the error in predicted measurement for many discharges for
each probe. Note that in future plots, the error bars are increased to 2σ .
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FIG. 10: Change in probe measurements ∆B(−50 kAt) = Bcalc(−50)−Bcalc(0)
ie ∆B(−50) is the change in B at each probe going from 0 current to -50 kAt in
the UD coils. Poloidal flux matrices produced by CLISTE in interpretive mode.

Clearly the probes which experience the greatest change in measurement
are those close to the upper divertor (probes 9-12) which are at high Z, but
interestingly the probes at low Z (probes 28-32) also experience a large change
in measurement. Ideally, both sets of coils coils be very useful for detecting
new magnetic field configurations, but as was mentioned probes 28 and 30 are
very unreliable. The reason for this is currently unknown, but the issue is being
addressed. Thus, the primary (reliable) tools in measuring new magnetic field
configurations due to current in the UDCs are unsurprisingly the probes closest
to these coils. The errors associated with probes 9-12 are very low, at up to 1.5
mT for this code’s predictions, and up to 1 mT for CLISTE’s predictions, which
is only∼ 3% of the change in measurement at probe 10/11 due to the maximum
current in the UDCs.

5. Probe Measurements for Various UDC Currents

In the previous section, the case of maximum UDC current was used for demon-
stration as it resulted in the largest change in magnetic field measurements, but
in this section the probe measurements at varying UDC currents are compared.
A metric for the confidence with which the magnetic field configurations are
measured is given by the ∆B plots in which 2σ error bars depict the uncertainty
in these predictions. Both probes Bthe30 and Bthe28 are considered outliers for
this discussion.
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(a) No UDC current (b) UDC current of -30 kAt

(c) UDC current of -40 kAt (d) UDC current of -50 kAt

FIG. 11: Contours of the poloidal flux for various UDC currents, with the dif-
ference in measurement at each poloidal field probe relative to the 0 current
case shown beneath each contour plot. Contour plot axes in [m], separatrices
(contours which contain nulls) in dashed red. Current vessel components in
grey, planned components in blue. In black are 9 evenly spaced contours in the
range of [-1.675,-1.5] inclusive.
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Clearly Figure 11 demonstrates that the magnitude of the change in mea-
surement for each UDC current shown is far above even the 2σ error in predic-
tion for those poloidal field probes in the vicinity of these planned coils. Even in
the case of probes far from the UDCs, many of the measurements (particularly
those at low-Z) are still very confidently predicted relative to 0 UDC current.

6. Future Work

The next steps for this project could be as follows. Firstly, More magnetic field
configurations should be investigated based on the outputs of CLISTE for vari-
ous UDC currents, with more attention paid to the probes which cannot be relied
upon when attempting to reproduce these field configurations. Secondly, the
output probe measurements need to be run back through CLISTE and the differ-
ences between the original flux matrix used to produce these measurements and
the flux matrix produced using these measurements examined; this will test the
robustness of the predictions. Finally to properly determine the confidence with
which these magnetic field configurations can be measured/ these measurements
predicted, the random Gaussian noise of the probe measurements must be taken
into account. Additive Gaussian noise on the order of 1 mT has been shown by
Padraig Mac Carthaigh to be appropriate for this, which is easily implemented.
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