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ABSTRACT. This document aims to provide an overview of basic sig-
nal processing techniques in the context of a real world example. This
example is the 5σ confidence detection of a binary black hole merger
via gravitational wave observatory advanced LIGO on 14/09/15. The
techniques used in this relatively simple introduction include the discrete
Fourier transform, fast Fourier transform, power spectral density, ampli-
tude spectral density, whitening and visualisation techniques such as the
creation of spectrograms.
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Preface

In this report, ideas, quotations and results are referenced using footnotes as
opposed to a bibliograpy due to the relatively informal nature of many of the
sources. A detailed list of all figures contained within the document and their
origins (original or otherwise) can be found at the end of the report. Note also
that all referencing is hyperlinked in the digital version, thus by clicking on a
reference number most PDF readers will bring the referenced item to the top of
the screen. This is not necessary for comprehension, but can be a useful tool for
quick navigation.

1. Motivation

A reasonable question to ask is “Why are signal processing techniques impor-
tant?”. The answer to this is simple: the techniques of signal processing are of
sufficient generality that their applications are plentiful and highly variable. The
most basic (or conventional) application is to simply obtain information about
data read by some instrument as a function of time. We do this by examin-
ing the components of this signal via various techniques outlined in this report,
however these techniques have no restriction to time domain data, nor the di-
mension of said data. The “signal” to which we apply these techniques can be a
signal in a more abstract sense, for example in the application of signal process-
ing techniques as a tool to solve systems of partial differential equations (PDEs).

Applications of these techniques include speech recognition, weather, eco-
nomic and seismoligical forecasting, image processing (including medical imag-
ing), computer graphics and many areas of experimental physics. Their impor-
tance is illustrated explicitly in the example presented here; a signal seeming to
be composed of mostly noise and of little interest is transformed into one of the
most important physical detections of the 21st century.
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2. Physical Preliminary

In order to understand the example, it is important to first have a basic under-
standing of the physical background and of the measurements being taken. A
basic overview of the structure, effects and origins of gravitational waves along
with the interferometric techniques used to observe them is presented thus.

2.1. Gravitational Waves

Gravitational waves were first predicted by Henri Poincaré in 1905, demon-
strating that the well-established Lorentz transformations require an emission
of some gravitational radiation from any accelerating mass1. Upon develop-
ment of his general theory of relativity (published in November 1915), Albert
Einstein and his colleagues realised that it too predicted this same gravitational
radiation. This idea is in some ways analogous to that of acceleration of an elec-
tric charge, which results in the emission of electromagnetic radiation. Einstein
was resistant to the idea however, as attempts to express the equations of general
relativity in a form similar to that of Maxwell’s equations and the wave equation
(Eq. 1) required him to make many assumptions, due to the complicated nature
of general relativistic calculations2.

∇
2
ψ(r, t) =

1
v2

∂ 2

∂ t2 ψ(r, t) (1)

It emerged later that his efforts were unsuccessful because he was using a
coordinate system not entirely suited to the calculations, which lead to singular-
ities that raised doubts in Einstein’s mind. After many more years of indecision,
Einstein eventually accepted their existence with some “encouragement” from
his colleagues, with one very important detail: gravitational waves, if they did
exist, would have incredibly small amplitudes and may be impossible to detect.
It is for this reason that it took exactly 100 years to progress from the conceptu-
alisation of this phenomenon to it’s measurement.

1 “Sur la dynamique d llectron” - Comptes Rendus of the French Academy of Sciences, 5
July 1905

2 A Brief History of Gravitational Waves - arXiv:1609.09400
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Gravitational waves are therefore a type of radiation emitted upon accelera-
tion of mass, which travel at the speed of light and do carry some energy (as was
argued by Feynman with his “sticky bead” argument). Their effect is to stretch
and squeeze the space through which they pass, the amount by which the space
is stretched being proportional to the amplitude of the gravitational wave. The
oscillatory stretching and compressing of space takes place orthogonal to the
direction of propagation of the wave (like the E and B fields of an electromag-
netic wave), and we define the strain h(t) as the amount by which the length
of an object differs from it’s “natural length” l0 at a given time t. This can be
expressed as in Equation 2.

l(t) = [1+h(t)] l0 (2)

2.2. Interferometry

The gravitational wave strains h(t) typically observed due to massive astronom-
ical events such as binary black hole or neutron star mergers at the position of
the Earth are on the order of 10−21. To put this in perspective, measuring a strain
this small on a rod of length 4km would change the length of this rod by 10−4

times the diameter of a proton. Measuring this is equivalent to changing the dis-
tance to the nearest star to our solar system, Proxima Centauri, by the width of
one human hair and then measuring this change in distance confidently3. In or-
der to measure a strain like this, a highly precise and clever approach is needed.
This approach is interferometry.

A Michelson interferometer is shown in Figure 1, which is an apparatus that
operates on the principle of wave interference. If the beam which is split 50/50
at the mirror interface travels different distances along each of the arms of the
interferometer, then the recombined beam will be of smaller amplitude than the
input beam due to destructive wave interference (provided the path difference
is not an integer multiple of λ , the wavelength of the light). Naı̈vely speaking,
the amount by which this is smaller gives an indication of the path length dif-
ference, allowing for variations in space in the plane of the interferometer to be
measured.

3 LIGO press conference 11 February 2016
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FIG. 1: A simplified look at the Michelson interferometer

Advanced LIGO consists of two highly specialised versions of the Michel-
son interferometer located in Livingston and Hanford, North America. They
are the products of decades of work by some of the greatest minds currently in
physics, and so it would be very difficult to explain here their function in it’s en-
tirety. Instead, it is simply important to know that via this interference method,
a strain as a function of time is measured. All data collected by advanced LIGO
must be released to the public with the tools to interpret this data, leading to the
publicly available jupyter notebook on which the data analysis in this report is
based4.

The strain data ±5 seconds around gravitational wave event GW150914 as
measured by both advanced LIGO detectors is shown in figure 2. This data does
not appear to contain any gravitational wave signal that would be expected from
a binary black hole merger whatsoever; the expected signal is a regular oscilla-
tion of increasing frequency, building up to a “chirp” followed by a ringdown,
corresponding to the increase in orbital frequency of a binary black hole system
as they approach merger (via loss of energy through gravitational radiation it-
self) until they merge and no more gravitational radiation is observed. A single

4 Full tutorial at https://losc.ligo.org including data releases
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FIG. 2: Note that the time displayed on the x axis is GPS time, ie. the number
of seconds since Jan 6, 1980 GMT. Also note that the L1 strain is shifted from
zero mean for presentation purposes.

rotating body in space is not accelerating like two components of a binary are,
and is thus invisible to a gravitational wave observatory. This is where the all
important signal processing techniques come in, as this very signal contains ev-
idence of that exact scenario: two black holes (one about 30 solar masses and
the other about 40) spiraling towards their center of mass and merging in under
one tenth of a second5.

3. The Discrete Fourier Transform (DFT)

Recall the definition of the continuous Fourier transform to frequency space for
a function of time x(t) as in Equation 3. This can be visualised as examining the
frequencies of the sinusoids required to “construct” this x(t) as in Figure 3. Of
course angular frequency ω could be used in place of f , however in these appli-
cations it is often easier to interpret results in linear frequency space. Also note
that there is of course a reverse Fourier transform, and the normalisation factor
of 1/2π can be included in the Fourier transform or its inverse (or perhaps even
1/
√

2π in each) but this is simply a matter of convention. It will be included in

5 B.P. Abbott et al. hPhys. Rev. Lett. 116, 061102 Published 11 February 2016
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FIG. 3: A visualisation of the Fourier transform from the time domain to the
frequency domain

the reverse Fourier transform throughout the remainder of this report.

X( f ) =
∫

∞

−∞

x(t)e−2πi f tdt (3)

Of course we do not measure a continuous signal, we measure discrete data
in time “bins” and thus a Fourier transform cannot be calculated in this way. We
instead use the discrete Fourier transform (DFT) which can be thought of as a
function which takes a series of data (N points) in the time domain and returns N
complex numbers, the magnitudes and phases of which represent the frequency
content on the time domain signal.

xk =
N−1

∑
n=0

xne−2πi k
N n (4)

The formal expression of the DFT (Eq. 4) is analagous to the continuous
case, with the function x(t) replaced by the nth data point xn, the time t replaced
by the summation index n and the frequency replaced by the index of the fre-
quency bin being calculated, k, normalised to the total size of the dataset N.
Note the summation is from n = 0 to N−1, yielding exactly N complex values
in the frequency domain. A very simple example of the DFT is shown in figure
4, where the frequency content of a simple sinusoid of frequency 1 Hz and am-
plitude 1 is examined.
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FIG. 4: DFT of simple sinusoid on a two-sided DFT plot. Orange line is the
theoretical signal and blue dots represents measured data points.

Note that in the DFT complex amplitude plot, peaks are observed at both 1
Hz and 7 Hz, despite only the frequency 1Hz being present6 in the data. The
reason for this is the phenomenon of aliasing. The maximum measurable fre-
quency in any data series is defined by the Nyquist limit, which is simply half
the sampling rate. A useful visualisation of aliasing is shown in Figure 5, in
which it is clear that the apparent frequency components of a signal are essen-
tially “mirrored” about the Nyquist frequency, as past this value the apparent
frequency decreases.

The second half of the double sided DFT plot can then be discounted, as it is
past the Nyquist limit of 4 Hz for this example (Note the plot is symmetric about
this point). In practice we double the amplitude of the first half and normalise
to the total number of samples to obtain meaningful results.

6 Of course mathematically, the 7 Hz signal is “present”, but this is a result of the two-
sidedness and symmetry of the DFT plot
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FIG. 5: A demonstration of aliasing for constant sampling rate. An increasing
frequency signal (blue) past the Nyquist limit is read as a decreasing frequency
sinusoid.

4. The Fast Fourier Transform

The FFT is simply an algorithm for the computation of the discrete Fourier
transform which reduces the order of complexity from O(n2) to O(n logn). It
accomplishes this via a divide and conquer algorithm which takes 1 signal of
n points and divides it into two signals of n/2 points. This can be repeated for
each of these two new signals and so on until n signals of 1 point are obtained.
At this point the summations involved in the computation of the DFT are simply
one term, greatly reducing computational load. The “splitting” of the signal’s
DFT takes place via the summation index, as in figure 6.

Simply splitting the FFT into two does not reduce computational load, to
do this we employ the so-called “symmetry identity” of Equation 5 in which m
is a positive integer. This identity tells us that the exponential present in both
summations repeats itself after the frequency index k reaches N/2, meaning we
need only compute half the Xk.
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FIG. 6: The splitting of a DFT by even and odd index for use in the FFT

e−
2πi(k)m
(N/2) = e−

2πi(k+ N
2 )m

(N/2) (5)

This is the power of the FFT algorithm; through divide and conquer methods
the total number of operations can be greatly reduced, which lead to it being
called “the most important numerical algorithm of our lifetime”7.

5. Power Spectral Density & Amplitude Spectral Density

As was mentioned in Section 3, the DFT yields N complex numbers Xk which
represent the amplitude and phase of the kth frequency bin (Frequency bin and
not specific value because the resolution in frequency space is simply the sam-
pling frequency divided by the total number of samples N). In many physical
applications, the phases are of relatively low importance, and it can be very use-
ful to examine only the power and its variance with frequency. This leads to the
concept of the “power spectral density”, which describes the distribution of the
power content of the signal over the frequencies present. The computation of the
power spectral density follows simply from the DFT components as in Equation
6. The notation used for the PSD here is φ( f ) in line with that employed by P
Stoica & R Moses in “Spectral Analysis of Signals” (2005).

7 Strang, Gilbert (MayJune 1994). ”Wavelets”. American Scientist. 82 (3): 250255

10



SIGNAL PROCESSING IN INTERFEROMETRY

FIG. 7: ASD for GW150914 from both detectors. The limits 20 Hz and 2000 Hz
are such because advanced LIGO is not sensitive to frequencies below 20 Hz
and the sampling rate is 4096 Hz, thus 2000 Hz is just below the Nyquist limit.

φ( f ) =
〈
|Xk|2

〉
(6)

Noting that the power spectral density contains information about the square
of the magnitude, we introduce the “amplitude spectral density”, which is sim-
ply the square root of the PSD. Shown in Figure 7 is the ASD of the signals
from both detectors and an approximation with an analytic expression for use in
later signal processing. The ASD is an approximation of the strain-equivalent
noise as a function of frequency, and thus to obtain the RMS noise for a given
frequency band, the ASD need only be integrated over that band.

There are many sharp peaks in the ASD, many of which are at harmonic
frequencies. This is no coincidence, as these lines correspond to the noise due
to the modes of vibration of the cables suspending the test masses of the inter-
ferometer. It is also clear that in the frequency band of roughly 80 to 300 Hz
the ASD undergoes a minimum, and therefore this is the most sensitive band.
We now use the ASDs to more accurately examine the signal content that is not
attributable to noise.
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6. Whitening

“Whitening” a signal refers to transforming the signal such that it has a relatively
flat PSD (and ASD) as is the case with purely white noise. This is accomplished
by dividing the signal by its ASD in the Fourier domain, which has the effect
of suppressing the extra noise at low frequencies and at the peaks so we can
better see the signal in the most sensitive band. One of the greatest strengths of
whitening is that it depends only on the ASD of data, which depends only on
the data itself. No knowledge of what is being measured is required (although it
helps to know what you’re doing) and these processes can always be carried out.

In order to visualise the frequency content of the data over some time in-
terval before and after whitening, we create a spectrogram; a 3D plot where
the third dimension (either a third axis or a colour spectrum) represents the
“amount” of a certain frequency which is present at a certain time. In order to
create a spectrogram, we first divide the time signal into an appropriate number
of section, then apply a windowing function to each of these sections (such as
the Hamming window, which would be suitable here). We apply a windowing
function to account for fact that the DFT assumes a signal repeats periodically
to infinity, and so if the start and end of a particular section do not match up, a
discontinuity in the repeated signal will cause the DFT to find many undesired
high frequency signals.. The choice of windowing function is important, as the
goal is to minimise the effect of spectral leakage, which is discussed in detail in
by P Stoica R Moses in “Spectral Analysis of Signals” (2005).

With sectioned, windowed data, the FFT of each data segment is taken and
this frequency content of each “time slice” is plotted together, resulting in a
plot such as that of Figure 8 for the unwhitened data from GW150914. The
spectrogram of data from both detectors is almost identical, and so only the
Hanford detector data is shown here. Note the harmonic frequencies present at
all times, which again correspond to the vibrational modes of the suspension
cables.

By whitening the signal and focusing on the small irregularity around t = 0
in the frequency band between 0 and 300 Hz (which is our GW event), we obtain
Figure 9. This “chirp”, named so because the dominant frequency increases with
time, has been identified as interesting and must now be examined.
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FIG. 8: Unwhitened spectrogram of Hanford detector data

FIG. 9: Irregularity in whitened Hanford detector signal
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7. Comparison to Theory

We must now examine if the frequency content of this signal matches what we
would expect from general relativistic models. As mentioned in Section 2.1,
these equations are very complicated and thus can only be solved numerically
in the most symmetric cases, meaning that to model the GW signal we expect
to see due to a specific event we employ numerical methods. Numerical relativ-
ity is a huge field which will not be discussed in detail here, rather it’s results
relevant to advanced LIGO; thousands of waveform templates which describe
the GW signal we would measure on Earth for different astronomical events.
In the advanced LIGO “data pipeline” after generic waveform searches identify
candidates for GW events, the signal is compared to all of these templates with
different parameters which is incredibly computationally intensive. This cannot
be achieved on a consumer-grade computer and so we skip many of the sub-
tleties and use the waveform template identified to be a match by this pipeline8.

To match this template waveform to our signal, we must first whiten the
template using our ASD calculated from the raw data. In essence, this approxi-
mates what would be read by this detector if the exact template waveform passed
through it. After whitening the template, it can be superimposed on the event
and the residual between the two calculated as in Figures 10a and 10b. Evi-
dently, this was repeated for the Livingston detector and an equally close rela-
tionship was obtained.

With this relatively simple analysis we obtain a close fit to the data around
the time of maximum amplitude tmax in the range tmax

+0.015
−0.05 seconds, which is

the region in which the signal became of high enough amplitude to be detectable
(ie. a sufficient signal to noise ratio). It is noteworthy that the event was not de-
tected at the same time by both detectors, but in fact roughly 8 ms apart. This
is because the distance between the detectors is such that a wave propagating at
the speed of light takes 8 ms to travel from Livingston to Hanford9. Also note

8 The data pipeline is described in full and GW analysis packages are publicly available
from LIGO, the packages which were actually used to create the results used in LIGO publica-
tions.

9 Provided the Earth is transparent to such a wave
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(A) Hanford detector data and whitened numerical relativistic template

(B) Livingston detector data and whitened numerical relativistic template

FIG. 10: Note the difference in scale of the residual and signal (roughly a factor
of 2) which makes the residual appear slightly smaller than it is. The residual is
calculated as the template subtracted from the measured data. The signal and
residual axes are presented in units of noise standard deviations.
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that the amplitude of the event is smaller for the Livingston detector than that
for the Hanford detector. The reason for this is simple, both detectors do not
have the same orientation and thus the same gravitational wave signal will be
at a different angle to each, thus exerting a different strain on the arms of the
interferometer.

This is not a 5σ confidence detection as the result of LIGO publications
is. Their data pipeline can produce very confident results through techniques
like waveform template mixing which were not investigated here. However, by
comparing the initial data to the whitened signal the power of signal processing
becomes clear. Even by looking at an unwhitened spectrogram with appropriate
time resolution and windowing provides insight into the event that took place.
This simple analysis reasonably recreates one of the most important detections
of the 21st century, with nothing more than basic signal processing and common,
publicly available python packages.
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List of Figures

Originally Produced Figures

(2) - Original figure based on work of LIGO data analysis documentation10

(4) - Produced using python (numpy, matplotlib)

(5) - Produced using python (numpy, matplotlib)

(6) - Original “Figure” with equations produced using LATEX

(7) - Original Figure based on work of LIGO data analysis documentation10

(10a) - Original Figure based on work of LIGO data analysis documentation10

(10b) - Original Figure based on work of LIGO data analysis documentation10

Public Domain Figures

(1) - Public domain image obtained from https://en.wikipedia.org/wiki/Interferometry
on 19/02/18

(3) - licensed under the Creative Commons Attribution-Share Alike 4.0 In-
ternational license, attributed to author “phonical”, obtained from
https://en.wikipedia.org/wiki/Fast Fourier transform on 19/02/18

(8) - Public domain image obtained from LIGO data analysis tutorial

(9) - Public domain image obtained from LIGO data analysis tutorial

10 GW detector data obtained from LIGO public data release, figure produced using code
based largely on the tutorial also distributed by LIGO at https://losc.ligo.org
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